
 / Python for Scien�fic Compu�ng documenta�on

Python for Scientific Computing

 A�ending the course 5-7 November, 2024?

See the course page here and watch at h�ps://twitch.tv/coderefinery. Whether you are or
aren’t, the course material is below. Videos will appear in this playlist (Last year’s videos:
playlist).

Python is a modern, object-oriented programming language, which has become popular in
several areas of so�ware development. This course discusses how Python can be u�lized in
scien�fic compu�ng. The course starts by introducing some of the main Python tools for
compu�ng: Jupyter for interac�ve analysis, NumPy and SciPy for numerical analysis,
Matplotlib for visualiza�on, and so on. In addi�on, it talks about how python is used: related
scien�fic libraries, reproducibility, and the broader ecosystem of science in Python, because
your work is more than the raw code you write.

This course (like any course) can’t teach you Python… it can show your some examples, let
you see how experts do things, and prepare you to learn yourself as you need to.

⚙ Prerequisites

Knowing basic Python syntax. We assume that you can do some Python
programming, but not much more that that. We don’t cover standard Python
programming. Here a short course on basic Python syntax, with further references.
Watch or read the command line crash course, if you aren’t familiar.
You should be able to use a text editor to edit files some.
The so�ware installa�on described below (basically, anaconda).

These are not prerequisites:

Any external libraries, e.g. numpy
Knowing how to make scripts or use Jupyter

 Videos and archived Q&A

Videos and material from past instances:

2021: this YouTube playlist.
2022: here, Q&A: days 1-2, days 3-4
2023: Videos

https://scicomp.aalto.fi/training/scip/python-for-scicomp-2024/
https://twitch.tv/coderefinery
https://www.youtube.com/playlist?list=PLZLVmS9rf3nMWEKWtagJ6h0q9BrFO49tn
https://www.youtube.com/playlist?list=PLZLVmS9rf3nNI3oQEqSJW6yXltOAZnkpa
https://coderefinery.github.io/data-visualization-python/python-basics/
https://scicomp.aalto.fi/scicomp/shell/
https://www.youtube.com/playlist?list=PLZLVmS9rf3nOS7bHNmbcDoyTnMYaz_TJW
https://www.youtube.com/playlist?list=PLZLVmS9rf3nOm3xkYuInBWPUvS93sAUlk
https://hackmd.io/@coderefinery/python2022archive
https://hackmd.io/@coderefinery/python2022archive2
https://www.youtube.com/playlist?list=PLZLVmS9rf3nNI3oQEqSJW6yXltOAZnkpa

2024 (Please contact us if you would like to help to process the videos): Videos

(prereq) Introduc�on to Python

30 min Jupyter

60 min NumPy or Advanced NumPy

60 min Pandas

30 min Xarray

60 min Plo�ng with Matplotlib

60 min Plo�ng with Vega-Altair

30 min Working with Data

60 min Scripts

40 min Profiling

20 min Produc�vity tools

30 min Web APIs with Python

15 min SciPy

30 min Library ecosystem

45 min Parallel programming

45 min Dependency management

30 min Binder

60 min Packaging

Introduction to Python

❓ Ques�ons

What are the basic blocks of Python language?
How are func�ons and classes defined in Python?

 Objec�ves

Get a very short introduc�on to Python types and syntax
Be able to follow the rest of the examples in the course, even if you don’t understand
everything perfectly.

We expect everyone to be able to know the following basic material to follow the course
(though it is not everything you need to know about Python).

https://www.youtube.com/playlist?list=PLZLVmS9rf3nMWEKWtagJ6h0q9BrFO49tn

If you are not familiar with Python, here is a very short introduc�on. It will not be enough to
do everything in this course, but you will be able to follow along a bit more than you would
otherwise.

➡ See also

This page contains an overview of the basics of Python. You can also refer to This Python
overview from a different lesson which is slightly more engaging.

Scalars

Scalar types, that is, single elements of various types:

Read more: int , float , complex , bool , str , bytes .

Collections

Collec�ons are data structures capable of storing mul�ple values.

Read more: list , tuple , dict , set .

Control structures

Python has the usual control structures, that is condi�onal statements and loops. For
example, the The if statement statement:

i = 42 # integer

i = 2**77 # Integers have arbitrary precision

g = 3.14 # floating point number
c = 2 - 3j # Complex number

b = True # boolean

s = "Hello!" # String (Unicode)

q = b'Hello' # bytes (8-bit values)

l = [1, 2, 3] # list
l[1] # lists are indexed by int

l[1] = True # list elements can be any type

d = {"Janne": 123, "Richard": 456} # dictionary

d["Janne"]

s = set(("apple", "cherry", "banana", "apple")) # Set of unique values
s

https://coderefinery.github.io/data-visualization-python/python-basics/
https://coderefinery.github.io/data-visualization-python/python-basics/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/reference/compound_stmts.html#if

While loops loop un�l some condi�on is met:

For loops loop over some collec�on of values:

O�en you want to loop over a sequence of integers, in that case the range func�on is
useful:

Another common need is to iterate over a collec�on, but at the same �me also have an index
number. For this there is the enumerate() func�on:

Functions and classes

Python func�ons are defined by the Func�on defini�ons keyword. They take a number of
arguments, and return a number of return values.

x = 2

if x == 3:

 print('x is 3')
elif x == 2:

 print('x is 2')

else:

 print('x is something else')

x = 0
while x < 42:

 print('x is ', x)

 x += 0.2

xs = [1, 2, 3, 4]

for x in xs:
 print(x)

for x in range(9):

 print(x)

xs = [1, 'hello', 'world']

for ii, x in enumerate(xs):
 print(ii, x)

https://docs.python.org/3/reference/compound_stmts.html#while
https://docs.python.org/3/reference/compound_stmts.html#for
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/reference/compound_stmts.html#def

Classes are defined by the Class defini�ons keyword:

Python type system

Python is strongly and dynamically typed.

Strong here means, roughly, that it’s not possible to circumvent the type system (at least, not
easily, and not without invoking undefined behavior).

Dynamic typing means that types are determined at run�me, and a variable can be redefined
to refer to an instance of another type:

Jargon: Types are associated with rvalues, not lvalues. In sta�cally typed language, types are
associated with lvalues, and are (typically) reified during compila�on.

??? (lesson here)

 Keypoints

Python offers a nice set of basic types as many other programming languages
Python is strongly typed and dynamically typed

def hello(name):

 """Say hello to the person given by the argument"""

 print('Hello', name)
 return 'Hello ' + name

hello("Anne")

class Hello:

 def __init__(self, name):
 self._name = name

 def say(self):

 print('Hello', self._name)

h = Hello("Richard")
h.say()

x = 42

type(x)

x + "hello"

x = 42
x = "hello"

https://docs.python.org/3/reference/compound_stmts.html#class

Jupyter

❓ Ques�ons

What is the purpose of a “Computa�onal narra�ve”?
What role does Jupyter play in development?
When is Jupyter not a good tool?

 Objec�ves

This part will be too easy for some people, and slow for others. S�ll, we need to take
some �me to get everyone on the same page.

Be able to use Jupyter to run examples for the rest of the course.
Be able to run Jupyter in a directory do your own work.
You won’t be a Jupyter expert a�er this, but should be able to do the rest of the
course.

What is Jupyter?

Jupyter is a web-based interac�ve compu�ng system. It is most well known for having the
notebook file format and Jupyter Notebook / Jupyter Lab. A notebook format contains both
the input and the output of the code along documenta�on, all interleaved to create what is
called a computa�onal narra�ve.

Jupyter is good for data explora�on and interac�ve work.

We use Jupyter a lot in this course because it is a good way that everyone can follow along,
and minimizes the differences between opera�ng systems.

Getting started with Jupyter

Start JupyterLab: there are different ways, depending on how you installed it. See the
installa�on instruc�ons. If JupyterLab isn’t working yet, you have some �me to try to
follow the installa�on instruc�ons now.

Miniforge Anaconda Other

This is the command line method we went though in our installa�on instruc�ons.

Linux / MacOS Windows

https://aaltoscicomp.github.io/python-for-scicomp/installation/

For prac�cal purposes, JupyterLab is an integrated development environment that combines
file browsing, notebooks, and code edi�ng. There are many extensions that let you do
whatever you may need.

Here, we see a tour of the JupyterLab interface:

Exercises 1

✍ Exercises: Jupyter-1

If you aren’t set up with JupyterLab yet or these things don’t work, use this �me to see
the installa�on instruc�ons and ask us any ques�ons you may have.

$ source ~/miniforge3/bin/activate

$ conda activate python-for-scicomp

$ jupyter-lab

https://aaltoscicomp.github.io/python-for-scicomp/installation/

1. Start Jupyter in the directory you want to use for this course.
If you are using Miniforge from the command line, you can navigate with cd to a
directory of your choice.
If you are star�ng from the Anaconda Navigator, change to the directory you want
to use.

2. Create a Python 3 notebook file. Save it. In the next sec�on, you will add stuff to it.
3. (op�onal, but will be done in future lessons) Explore the file browser, try making some

non-notebook text/py/md files and get used to that.
4. (op�onal, advanced) Look at the notebook file in a text editor. How does it work?

If everything works for you, this will end very quickly. You can begin reading the next
sec�ons independently.

Running code in Jupyter

A notebook is divided into cells. Each cell has some input, and when it is executed an output
appears right below it.

There are different types of cells: primarily code cells and markdown cells. You can switch
between them with the menu bar above. Code cells run whatever language your notebook
uses. Markdown is a lightweight way of giving style to text - you can check out this
reference. For example the previous sentence is:

When using keyboard shortcuts, you can switch between edit mode and command mode
with Enter and Esc .

You enter code in a cell, and push the run bu�on to run it. There are also some important
shortcut keys:

Markdown is a lightweight way of giving *style* to `text` - you

can check out [this reference](https://commonmark.org/help/).

https://commonmark.org/help/
https://commonmark.org/help/

Ctrl-Enter : Run cell
Shift-Enter : Run cell and select cell below
Alt-Enter : Run cell and insert new cell below
a / b : insert new cell above/below
m / y : markdown cell / code cell
x : cut cell
c : copy cell
v : paste cell
d, d : delete cell

Now, let’s look at some code samples:

By conven�on, if the last thing in a cell is an object, that object gets printed:

In addi�on to raw cells, there are magics, which exist outside of Python. They are a property
of the run�me itself (in Python’s case, they come from IPython. For example, the following
cell magic %%�meit will use the timeit module to �me a cell by running it mul�ple �mes):

for i in range(3):

 print(i)

0
1

2

print(sum(range(5)))

10

sum(range(5))
sum(range(10))

%%timeit

for x in range(1000000):

 x**2

54.1 ms ± 993 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://docs.python.org/3/library/timeit.html#module-timeit

Another example is %%bash which will turn the cell into a shell script (This will only work on
opera�ng systems with the Bash shell installed - MacOS and Linux at least):

A cell magic starts with %% , goes on the first line of a cell, and applies to the whole cell
A line magic starts with % , goes on any line, and applies to that line.

Exercises 2

✍ Exercises: Jupyter-2

1. Run some trivial code, such as print(1) .
2. Run some slightly less trivial code, like print out the first ten Fibonacci numbers.
3. Make a Markdown cell above your code cell and give it a �tle and some descrip�on of

your func�on. Use the reference to add a heading, bullet list, and some (bold, italic, or
inline code)

4. Use the %%�meit magic func�on to �me your Fibonacci func�on.
5. Again using %%timeit , figure out the fastest way to sum the numbers 0 to 1000000.
6. Once you are done, close your notebooks and other tabs you don’t need. Check the

running sessions (hint: thin le� sidebar) and shut down these kernels.

✔ Solu�ons: Jupyter-2

1. –
2. Simple fibonacci code

3. Markdown descrip�on

%%bash

for x in $(seq 3) ; do

 echo $x
done

1

2

3

a, b = 0, 1
for i in range(10):

 print(a)

 a, b = b, a+b

https://ipython.readthedocs.io/en/stable/interactive/magics.html#cellmagic-bash
https://en.wikipedia.org/wiki/Fibonacci_number
https://commonmark.org/help/
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

4. In this case, the print() statements get out of hand, so we comment that out. In
general, wri�ng output usually takes a lot of �me rele�ve to the computa�on, so we
don’t want to �me that (unless output is the main point of the code, then we do have
to �me it!

5. –
6. –

Why Jupyter?

Being able to edit, check, re-edit quickly is great for prototyping and tes�ng new ideas
Tends to be best either at the very beginning (ge�ng started) or data analysis/plo�ng
phases.

You can make a complete story - in one place. No more having code, figures, and
descrip�on in different places.

Instead of sending plots to your advisor, send plots, the text there, and possibility of
checking the code, too.

Notebook as an interac�ve publica�on itself - for example the discovery of gravita�onal
waves data is released as a notebook.
Jupyter Notebooks display on Github - low-barrier way to share your analysis.
Teaching - great for ge�ng difficult so�ware distribu�on out of the way.

Why not Jupyter?

Jupyter is great for many things, but there are some problems if not used well:

They don’t promote modularity, and once you get started in a notebook it can be hard to
migrate to modules.
They are difficult to test. There are things to run notebooks as unit tests like nbval, but
it’s not perfect.

Fibonacci

* Start with two variables `a` and `b`

* Repeat 10 times
 * Print old `a`, then increment both

* Makes use of the Python *tuple assignment*: `a, b = new_a, new_b`

%%timeit

a, b = 0, 1

for i in range(10):
 #print(a)

 a, b = b, a+b

395 ns ± 10.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

https://www.gw-openscience.org/tutorials/
https://nbval.readthedocs.io/

Notebooks can be version controlled (nbdime helps with that), but there are s�ll
limita�ons.
You can change code a�er you run it and run code out of order. This can make debugging
hard and results irreproducible if you aren’t careful.
Notebooks aren’t named by default and tend to acquire a bunch of unrelated stuff. Be
careful with organiza�on!
Once lots of code is in notebooks, it can be hard to change to proper programs that can
be scripted.

You can read more about these downsides h�ps://scicomp.aalto.fi/scicomp/jupyter-pi�alls/.

But these downsides aren’t specific to Jupyter! They can easily happen in other sources,
too. By studying these, you can make any code be�er, and find the right balance for what you
do.

Exercises 3

✍ Exercises: Jupyter-3

(op�onal) Discuss the following in groups:

1. Have any of you used Jupyter in a way that became impossible to maintain: too many
files, code all spread out, not able to find your code and run it in the right order. How
did you solve that?

2. On the other hand, what are your successes with Jupyter?
3. How can you prevent these problems by be�er development strategies?

See also

The CodeRefinery Jupyter lesson has much more, and the source of some of the content
above.

 Keypoints

Jupyter is powerful and can be used for interac�ve work
… but not the end solu�on when you need to scale up.

NumPy

❓ Ques�ons

Why use NumPy instead of pure python?
How to use basic NumPy?
What is vectoriza�on?

https://nbdime.readthedocs.io/
https://scicomp.aalto.fi/scicomp/jupyter-pitfalls/
https://coderefinery.github.io/jupyter/

 Objec�ves

Understand the Numpy array object
Be able to use basic NumPy func�onality
Understand enough of NumPy to seach for answers to the rest of your ques�ons ;)

We expect most people to be able to do all the basic exercises here. It is probably quite
easy for many people; we have advanced exercises at the end in that case.

So, we already know about python lists, and that we can put all kinds of things in there. But
in scien�fic usage, lists are o�en not enough. They are slow and not very flexible.

What is an array?

For example, consider [1, 2.5, 'asdf', False, [1.5, True]] - this is a Python list but it has
different types for every element. When you do math on this, every element has to be
handled separately.

NumPy is the most used library for scien�fic compu�ng. Even if you are not using it directly,
chances are high that some library uses it in the background. NumPy provides the high-
performance mul�dimensional array object and tools to use it.

An array is a ‘grid’ of values, with all the same types. It is indexed by tuples of non nega�ve
indices and provides the framework for mul�ple dimensions. An array has:

dtype - data type. Arrays always contain one type
shape - shape of the data, for example 3×2 or 3×2×500 or even 500 (one dimensional)
or [] (zero dimensional).
data - raw data storage in memory. This can be passed to C or Fortran code for efficient

calcula�ons.

To test the performance of pure Python vs NumPy we can write in our jupyter notebook:

Create one list and one ‘empty’ list, to store the result in

In a new cell star�ng with %%timeit , loop through the list a and fill the second list b with
a squared

a = list(range(10000))

b = [0] * 10000

https://numpy.org/doc/stable/reference/arrays.dtypes.html#arrays-dtypes
https://numpy.org/doc/stable/glossary.html#term-shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.data.html#numpy.ndarray.data

That looks and feels quite fast. But let’s take a look at how NumPy performs for the same
task.

So for the NumPy example, create one array and one ‘empty’ array to store the result in

In a new cell star�ng with %%timeit , fill b with a squared

We see that compared to working with numpy arrays, working with tradi�onal python lists is
actually slow.

Creating arrays

There are different ways of crea�ng arrays (numpy.array() , numpy.ndarray.shape ,
numpy.ndarray.size):

In addi�on to above ways of crea�ng arrays, there are many other ways of crea�ng arrays
depending on content (numpy.zeros() , numpy.ones() , numpy.full() , numpy.eye() ,
numpy.arange() , numpy.linspace()):

%%timeit

for i in range(len(a)):

 b[i] = a[i]**2

import numpy as np

a = np.arange(10000)

b = np.zeros(10000)

%%timeit

b = a ** 2

a = np.array([1,2,3]) # 1-dimensional array (rank 1)

b = np.array([[1,2,3],[4,5,6]]) # 2-dimensional array (rank 2)

b.shape # the shape (rows,columns)

b.size # number of elements

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full
https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace

Arrays can also be stored and read from a (.npy) file (numpy.save() , numpy.load()):

In many occasions (especially when something goes different than expected) it is useful to
check and control the datatype of the array (numpy.ndarray.dtype , numpy.ndarray.astype()):

In the last example, .astype('int') , it will make a copy of the array, and re-allocate data -
unless the dtype is exactly the same as before. Understanding and minimizing copies is one of
the most important things to do for speed.

Exercises 1

✍ Exercises: Numpy-1

1. Datatypes Try out np.arange(10) and np.linspace(0,9,10) , what is the difference?
Can you adjust one to do the same as the other?

2. Datatypes Create a 3x2 array of random float numbers (check numpy.random.random())
between 0 and 1. Now change the arrays datatype to int (array.astype). How does
the array look like?

3. Reshape Create a 3x2 array of random integer numbers between 0 and 10. Change the
shape of the array (check array.reshape) in any way possible. What is not possible?

4. NumPyI/O Save above array to .npy file (numpy.save()) and read it in again.

✔ Solu�ons: Numpy-1

1. Datatypes

np.zeros((2, 3)) # 2x3 array with all elements 0

np.ones((1,2)) # 1x2 array with all elements 1

np.full((2,2),7) # 2x2 array with all elements 7
np.eye(2) # 2x2 identity matrix

np.arange(10) # Evenly spaced values in an interval

np.linspace(0,9,10) # same as above, see exercise

c = np.ones((3,3))

d = np.ones((3, 2), 'bool') # 3x2 boolean array

np.save('x.npy', a) # save the array a to a .npy file

x = np.load('x.npy') # load an array from a .npy file and store it in variable

x

d.dtype # datatype of the array

d.astype('int') # change datatype from boolean to integer

https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dtype.html#numpy.ndarray.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html#numpy.random.random
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save

np.arange(10) results in array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) with dtype int64,
while np.linspace(0,9,10) results in array([0., 1., 2., 3., 4., 5., 6., 7., 8.,
9.]) with dtype float64.

Both np.linspace and np.arange take dtype as an argument and can be adjusted to
match each other in that way.

2. Datatypes eg a = np.random.random((3,2)) . a.astype('int') results in an all zero
array, not as maybe expected the rounded int (all numbers [0, 1) are cast to 0).

3. Reshape eg b = np.random.randint(0,10,(3,2)) .

b.reshape((6,1)) and b.reshape((2,3)) possible.

It is not possible to reshape to shapes using more or less elements than b.size = 6 ,
so for example b.reshape((12,1)) gives an error.

4. NumPyI/O np.save('x.npy', b) and x = np.load('x.npy')

Array maths and vectorization

Clearly, you can do math on arrays. Math in NumPy is very fast because it is implemented in
C or Fortran - just like most other high-level languages such as R, Matlab, etc do.

By default, basic arithme�c (+ , - , * , /) in NumPy is element-by-element. That is, the
opera�on is performed for each element in the array without you having to write a loop. We
say an opera�on is “vectorized” when the looping over elements is carried out by NumPy
internally, which uses specialized CPU instruc�ons for this that greatly outperform a regular
Python loop.

Note that unlike Matlab, where * means matrix mul�plica�on, NumPy uses * to perform
element-by-element mul�plica�on and uses the @ symbol to perform matrix mul�plica�on:

a = np.array([[1,2],[3,4]])

b = np.array([[5,6],[7,8]])

Addition

c = a + b

d = np.add(a,b)

Matrix multiplication
e = a @ b

f = np.dot(a, b)

Other common mathema�cal opera�ons include: - (numpy.subtract), * (numpy.multiply),
/ (numpy.divide), .T (numpy.transpose()), numpy.sqrt , numpy.sum() , numpy.mean() , …

Exercises 2

✍ Exercises: Numpy-2

Matrix mul�plica�on What is the difference between numpy.multiply and
numpy.dot() ? Try it.

Axis What is the difference between np.sum(axis=1) vs np.sum(axis=0) on a two-
dimensional array? What if you leave out the axis parameter?

✔ Solu�ons: Numpy-2

Matrix mul�plica�on np.multiply does elementwise mul�plica�on on two arrays,
while np.dot enables matrix mul�plica�on.
Axis axis=1 does the opera�on (here: np.sum) over each row, while axis=0 does it
over each column. If axis is le� out, the sum of the full array is given.

Indexing and Slicing

➡ See also

Numpy basic indexing docs

NumPy has many ways to extract values out of arrays:

You can select a single element
You can select rows or columns
You can select ranges where a condi�on is true.

Clever and efficient use of these opera�ons is a key to NumPy’s speed: you should try to
cleverly use these selectors (wri�en in C) to extract data to be used with other NumPy
func�ons wri�en in C or Fortran. This will give you the benefits of Python with most of the
speed of C.

Boolean indexing on above created array:

a = np.arange(16).reshape(4, 4) # 4x4 matrix from 0 to 15

a[0] # first row

a[:,0] # first column
a[1:3,1:3] # middle 2x2 array

a[(0, 1), (1, 1)] # second element of first and second row as array

https://numpy.org/doc/stable/reference/generated/numpy.subtract.html#numpy.subtract
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply
https://numpy.org/doc/stable/reference/generated/numpy.divide.html#numpy.divide
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply
https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/user/basics.indexing.html#basics-indexing

Exercises 3

✍ Exercise: Numpy-3

View vs copy Try out above code. How does a look like before b has changed and
a�er? How could it be avoided?

✔ Solu�on: Numpy-3

View vs copy The change in b has also changed the array a ! This is because b is
merely a view of a part of array a . Both variables point to the same memory. Hence,
if one is changed, the other one also changes. If you need to keep the original array as
is, use np.copy(a) .

Types of operations

There are different types of standard opera�ons in NumPy:

ufuncs, “universal func�ons”: These are element-by-element func�ons with standardized
arguments:

One, two, or three input arguments
For example, a + b is similar to np.add(a, b) but the ufunc has more control.
out= output argument, store output in this array (rather than make a new array) - saves

copying data!
See the full reference
They also do broadcas�ng (ref). Can you add a 1-dimensional array of shape (3) to an 2-
dimensional array of shape (3, 2)? With broadcas�ng you can!

idx = (a > 0) # creates boolean matrix of same size as a

a[idx] # array with matching values of above criterion

a[a > 0] # same as above in one line

a = np.eye(4)

b = a[:,0]

b[0] = 5

a = np.array([[1, 2, 3],
 [4, 5, 6]])

b = np.array([10, 10, 10])

a + b # array([[11, 12, 13],

 # [14, 15, 16]])

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs
https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add
https://numpy.org/doc/stable/reference/ufuncs.html
https://numpy.org/doc/stable/user/basics.broadcasting.html#basics-broadcasting

Broadcas�ng is smart and consistent about what it does, which I’m not clever enough to
explain quickly here: the manual page on broadcas�ng. The basic idea is that it expands
dimensions of the smaller array so that they are compa�ble in shape.

Array methods do something to one array:

Some of these are the same as ufuncs:

Other func�ons: there are countless other func�ons covering linear algebra, scien�fic
func�ons, etc.

Exercises 4

✍ Exercises: Numpy-4

In-place addi�on: Create an array, add it to itself using a ufunc.
In-place addi�on (advanced): Create an array of dtype='float' , and an array of
dtype='int' . Try to use the int array is the output argument of the first two arrays.

Output arguments and �ming Repeat the ini�al b = a ** 2 example using the output
arguments and �me it. Can you make it even faster using the output argument?

✔ Solu�on: Numpy-4

in-place addi�on:

You note that np.add() has a third argument that is the output array (same as out=),
and the func�on returns that same array.

Output arguments and �ming In this case, on my computer, it was actually slower
(this is due to it being such a small array!):

x = np.arange(12)

x.shape = (3, 4)

x # array([[0, 1, 2, 3],
 # [4, 5, 6, 7],

 # [8, 9, 10, 11]])

x.max() # 11

x.max(axis=0) # array([8, 9, 10, 11])

x.max(axis=1) # array([3, 7, 11])

x = np.array([1, 2, 3])

id(x) # get the memory-ID of x

np.add(x, x, x) # Third argument is output array

np.add(x, x, x)

print(x)
id(x) # get the memory-ID of x

 # - notice it is the same

https://numpy.org/doc/stable/user/basics.broadcasting.html

This is a good example of why you always need to �me things before deciding what is
best.

Linear algebra and other advanced math

In general, you use arrays (n-dimensions), not matrixes (specialized 2-dimensional) in
NumPy.

Internally, NumPy doesn’t invent its own math rou�nes: it relies on BLAS and LAPACK to do
this kind of math - the same as many other languages.

Linear algebra in numpy
Many, many other array func�ons
Scipy has even more func�ons
Many other libraries use NumPy arrays as the standard data structure: they take data in
this format, and return it similarly. Thus, all the other packages you may want to use are
compa�ble
If you need to write your own fast code in C, NumPy arrays can be used to pass data. This
is known as extending Python.

Additional exercises

✍ Numpy-5

If you have extra �me, try these out. These are advanced and op�onal, and will not be
done in most courses.

1. Reverse a vector. Given a vector, reverse it such that the last element becomes the
first, e.g. [1, 2, 3] => [3, 2, 1]

2. Create a 2D array with zeros on the borders and 1 inside.
3. Create a random array with elements [0, 1), then add 10 to all elements in the range

[0.2, 0.7).
4. What is np.round(0.5) ? What is np.round(1.5) ? Why?
5. In addi�on to np.round , explore numpy.ceil , numpy.floor , numpy.trunc . In

par�cular, take note of how they behave with nega�ve numbers.

a = np.arange(10000)

b = np.zeros(10000)

%%timeit
numpy.square(a, out=b)

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
https://numpy.org/doc/stable/reference/routines.linalg.html
https://numpy.org/doc/stable/reference/routines.html
https://docs.scipy.org/doc/scipy/reference/
https://docs.python.org/3/extending/
https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil
https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor
https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc

6. Recall the iden�ty \(\sin^2(x) + \cos^2(x) = 1\). Create a random 4x4 array with values
in the range [0, 10). Now test the equality with numpy.equal . What result do you get
with numpy.allclose() instead of np.equal ?

7. Create a 1D array with 10 random elements. Sort it.
8. What’s the difference between np_array.sort() and np.sort(np_array) ?
9. For the random array in ques�on 8, instead of sor�ng it, perform an indirect sort. That

is, return the list of indices which would index the array in sorted order.
10. Create a 4x4 array of zeros, and another 4x4 array of ones. Next combine them into a

single 8x4 array with the content of the zeros array on top and the ones on the
bo�om. Finally, do the same, but create a 4x8 array with the zeros on the le� and the
ones on the right.

11. NumPy func�onality Create two 2D arrays and do matrix mul�plica�on first manually
(for loop), then using the np.dot func�on. Use %%�meit to compare execu�on �mes.
What is happening?

✔ Solu�on Numpy-5

1. One solu�on is:

2. One solu�on is:

3. A possible solu�on is:

4. For values exactly halfway between rounded decimal values, NumPy rounds to the
nearest even value.

5. Let’s test those func�ons with few nega�ve and posi�ve values:

a = np.array([1, 2, 3])

a[::-1]

b = np.ones((10,10))
b[:,[0, -1]]=0

b[[0, -1],:]=0

x = np.random.rand(100)

y = x + 10*(x >= 0.2)*(x < 0.7)

a = np.array([-3.3, -2.5, -1.5, -0.75, -0.5, 0.5, 0.75, 1.5, 2.5, 3])
np.round(a) # [-3. -2. -2. -1. -0. 0. 1. 2. 2. 3.]

np.ceil(a) # [-3. -2. -1. -0. -0. 1. 1. 2. 3. 3.]

np.floor(a) # [-4. -3. -2. -1. -1. 0. 0. 1. 2. 3.]

np.trunc(a) # [-3. -2. -1. -0. -0. 0. 0. 1. 2. 3.]

https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal
https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort
https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort

6. One solu�on is:

7. Sor�ng the array itself, without copying it:

8. NumPy.sort() returns a sorted copy of an array.
9. np.argsort(x)

10. One solu�on is:

11. Using numpy without numpy func�onality (np.dot) in this case, is s�ll slow.

See also

NumPy manual
Basic array class reference
Indexing
ufuncs

2020 Nature paper on NumPy’s role and basic concepts

 Keypoints

NumPy is a powerful library every scien�st using python should know about, since
many other libraries also use it internally.
Be aware of some NumPy specific peculiari�es

Advanced NumPy

❓ Ques�ons

How can NumPy be so fast?
Why are some things fast and some things slow?

x = 10*np.random.rand(4,4)

oo = np.ones((4,4))

s2c2 = np.square(np.sin(x))+np.square(np.cos(x))
np.equal(oo,s2c2)

np.allclose(oo,s2c2)

x = np.random.rand(10)

x.sort()

z = np.zeros((4,4))
o = np.ones((4,4))

np.concatenate((z,o))

np.concatenate((z,o),axis=1)

https://numpy.org/doc/stable/reference/
https://numpy.org/doc/stable/reference/arrays.html
https://numpy.org/doc/stable/reference/arrays.indexing.html
https://numpy.org/doc/stable/reference/ufuncs.html
https://www.nature.com/articles/s41586-020-2649-2

How can I control whether NumPy makes a copy or operates in-place?

 Objec�ves

Understand why NumPy has so many specialized func�ons for specific opera�ons
Understand the underlying machinery of the Numpy ndarray object
Understand when and why NumPy makes a copy of the data rather than a view

This is intended as a follow-up to the basic NumPy lesson. The intended audience for this
advanced lesson is those who have used NumPy before and now want to learn how to
get the most out of this amazing package.

Python, being an interpreted programming language, is quite slow. Manipula�ng large
amounts of numbers using Python’s build-in lists would be imprac�cally slow for any serious
data analysis. Yet, the NumPy package can be really fast. How does it do that? We will dive
into how NumPy works behind the scenes and use this knowledge to our advantage. This
lesson also serves as an introduc�on to reading the defini�ve work on this topic: Guide to
NumPy by Travis E. Oliphant, its ini�al creator.

NumPy can be really fast

Python, being an interpreted programming language, is quite slow. Manipula�ng large
amounts of numbers using Python’s build-in lists would be imprac�cally slow for any serious
data analysis. Yet, the numpy package can be really fast.

How fast can NumPy be? Let’s race NumPy against C. The contest will be to sum together
100 000 000 random numbers. We will give the C version below, you get to write the NumPy
version:

#include <stdlib.h>

#include <stdio.h>

#define N_ELEMENTS 100000000
int main(int argc, char** argv) {

 double* a = (double*) malloc(sizeof(double) * N_ELEMENTS);

 int i;

 for(i=0; i<N_ELEMENTS; ++i) {

 a[i] = (double) rand() / RAND_MAX;
 }

 double sum = 0;

 for(i=0; i<N_ELEMENTS; ++i) {

 sum += a[i];

 }
 printf("%f", sum);

 return 0;

}

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
http://web.mit.edu/dvp/Public/numpybook.pdf
http://web.mit.edu/dvp/Public/numpybook.pdf

Exercise 1

✍ Exercises: Numpy-Advanced-1

Write a Python script that uses NumPy to generate 100 million (100000000) random
numbers and add them all together. Time how long it takes to execute. Can you beat the
C version?

If you are having trouble with this, we recommend comple�ng the basic NumPy lesson
before con�nuing with this advanced lesson. If you are taking a live course - don’t worry,
watch and learn and explore some during the exercises!

✔ Solu�ons: Numpy-Advanced-1

The script can be implemented like this:

The libraries behind the curtain: MKL and BLAS

NumPy is fast because it outsources most of its heavy li�ing to heavily op�mized math
libraries, such as Intel’s Math Kernel Library (MKL), which are in turn derived from a Fortran
library called Basic Linear Algebra Subprograms (BLAS). BLAS for Fortran was published in
1979 and is a collec�on of algorithms for common mathema�cal opera�ons that are
performed on arrays of numbers. Algorithms such as matrix mul�plica�on, compu�ng the
vector length, etc. The API of the BLAS library was later standardized, and today there are
many modern implementa�ons available. These libraries represent over 40 years of
op�mizing efforts and make use of specialized CPU instruc�ons for manipula�ng arrays. In
other words, they are fast.

One of the func�ons inside the BLAS library is a func�on to compute the “norm” of a vector,
which is the same as compu�ng its length, using the Pythagorean theorem: \(\sqrt(a[0]^2 +
a[1]^2 + \ldots)\).

Let’s race the BLAS func�on versus a naive “manual” version of compu�ng the vector norm.
We start by crea�ng a decently long vector filled with random numbers:

import numpy as np

print(np.random.rand(100_000_000).sum())

import numpy as np
rng = np.random.default_rng(seed=0)

a = rng.random(100_000_000)

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://www.youtube.com/watch?v=Pc8DfEyAxzg&list=PLzLzYGEbdY5lrUYSssHfk5ahwZERojgid
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/blas-routines/blas-level-1-routines-and-functions/cblas-nrm2.html#cblas-nrm2
https://en.wikipedia.org/wiki/Pythagorean_theorem

We now implement the Pythagorean theorem using basic NumPy func�onality and use
%%timeit to record how long it takes to execute:

And here is the version using the specialized BLAS func�on norm() :

NumPy tries to avoid copying data

Understanding the kind of opera�ons that are expensive (take a long �me) and which ones
are cheap can be surprisingly hard when it comes to NumPy. A big part of data processing
speed is memory management. Copying big arrays takes �me, so the less of that we do, the
faster our code runs. The rules of when NumPy copies data are not trivial and it is worth
your while to take a closer look at them. This involves developing an understanding of how
NumPy’s numpy.ndarray datastructure works behind the scenes.

An example: matrix transpose

Transposing a matrix means that all rows become columns and all columns become rows. All
off-diagonal values change places. Let’s see how long NumPy’s transpose func�on takes, by
transposing a huge (10 000 ✕ 20 000) rand() matrix:

Let’s �me the transpose() method:

It takes mere nanoseconds to transpose 1600 MB of data! How?

The ndarray exposed

%%timeit

l = np.sqrt(np.sum(a ** 2))

print(l)

%%timeit

l = np.linalg.norm(a)

print(l)

import numpy as np

a = np.random.rand(10_000, 20_000)
print(f'Matrix `a` takes up {a.nbytes / 10**6} MB')

%%timeit

b = a.transpose()

https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html#numpy.random.rand
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose

The first thing you need to know about numpy.ndarray is that the memory backing it up is
always a flat 1D array. For example, a 2D matrix is stored with all the rows concatenated as a
single long vector.

How you see a matrix: How NumPy sees a matrix:

[0,]

[1,]

[2,]

[3,]

[,0] [,1] [,2] [,3]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

NumPy is faking the second dimension behind the scenes! When we request the element at
say, [2, 3] , NumPy converts this to the correct index in the long 1D array [11] .

Conver�ng [2, 3] → [11] is called “raveling”
The reverse, conver�ng [11] → [2, 3] is called “unraveling”

The implica�ons of this are many, so take let’s take some �me to understand it properly by
wri�ng our own ravel() func�on.

Exercise 2

✍ Exercises: Numpy-Advanced-2

Write a func�on called ravel() that takes the row and column of an element in a 2D
matrix and produces the appropriate index in an 1D array, where all the rows are
concatenated. See the image above to remind yourself how each row of the 2D matrix
ends up in the 1D array.

The func�on takes these inputs:

row The row of the requested element in the matrix as integer index.
col The column of the requested element in the matrix as integer index.
n_rows The total number of rows of the matrix.
n_cols The total number of columns of the matrix.

Here are some examples of input and desired output:

ravel(2, 3, n_rows=4, n_cols=4) → 11
ravel(2, 3, n_rows=4, n_cols=8) → 19
ravel(0, 0, n_rows=1, n_cols=1) → 0
ravel(3, 3, n_rows=4, n_cols=4) → 15
ravel(3_465, 18_923, n_rows=10_000, n_cols=20_000) → 69_318_923

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

✔ Solu�ons: Numpy-Advanced-2

The func�on can be implemented like this:

Strides

As seen in the exercise, to get to the next row, we have to skip over n_cols indices. To get to
the next column, we can just add 1. To generalize this code to work with an arbitrary number
of dimensions, NumPy has the concept of “strides”:

The strides a�ribute contains for each dimension, the number of bytes (not array indexes)
we have to skip over to get to the next element along that dimension. For example, the result
above tells us that to get to the next row in a 4 ✕ 8 matrix, we have to skip ahead 64 bytes.
64? Yes! We have created a matrix consis�ng of double-precision floa�ng point numbers.
Each one of those bad boys takes up 8 bytes, so all the indices are mul�plied by 8 to get to
the proper byte in the memory array. To move to the next column in the matrix, we skip
ahead 8 bytes.

So now we know the mystery behind the speed of transpose() . NumPy can avoid copying
any data by just modifying the strides of the array:

Another example: reshaping

Modifying the shape of an array through numpy.reshape() is also accomplished without any
copying of data by modifying the strides :

def ravel(row, col, n_rows, n_cols):

 return row * n_cols + col

np.zeros((4, 8)).strides # (64, 8)
np.zeros((4, 5, 6, 7, 8)).strides # (13440, 2688, 448, 64, 8)

import numpy as np

a = np.random.rand(10_000, 20_000)

b = a.transpose()

print(a.strides) # (160000, 8)

print(b.strides) # (8, 160000)

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides

Exercises 3

✍ Exercises: Numpy-Advanced-3

A li�le known feature of NumPy is the numpy.stride_tricks module that allows you to
modify the strides a�ribute directly. Playing around with this is very educa�onal.

1. Create your own transpose() func�on that will transpose a 2D matrix by reversing
its shape and strides a�ributes using numpy.lib.stride_tricks.as_strided() .

2. Create a (5 ✕ 100 000 000 000) array containing on the first row all 1’s, the second
row all 2’s, and so on. Start with an 1D array a = np.array([1., 2., 3., 4., 5.]) and
modify its shape and strides a�ributes using
numpy.lib.stride_tricks.as_strided() to obtain the desired 2D matrix:

✔ Solu�ons: Numpy-Advanced-3

1. The transpose() func�on can be implemented like this:

a = np.random.rand(20_000, 10_000)

print(f'{a.strides=}') # (80000, 8)

b = a.reshape(40_000, 5_000)
print(f'{b.strides=}') # (40000, 8)

c = a.reshape(20_000, 5_000, 2)

print(f'{c.strides=}') # (80000, 16, 8)

array([[1., 1., 1., ..., 1., 1., 1.],

 [2., 2., 2., ..., 2., 2., 2.],
 [3., 3., 3., ..., 3., 3., 3.],

 [4., 4., 4., ..., 4., 4., 4.],

 [5., 5., 5., ..., 5., 5., 5.]])

from numpy.lib.stride_tricks import as_strided

def transpose(a):
 return as_strided(a, shape=a.shape[::-1], strides=a.strides[::-1])

Testing the function on a small matrix

a = np.array([[1, 2, 3],

 [4, 5, 6]])
print('Before transpose:')

print(a)

print('After transpose:')

print(transpose(a))

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided
https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided

2. By se�ng one of the .strides to 0, we can repeat a value infinitely many �mes
without using any addi�onal memory:

A fast thing + a fast thing = a fast thing?

If numpy.transpose() is fast, and numpy.reshape() is fast, then doing them both must be fast
too, right?:

Measuring the �me it takes to first transpose and then reshape:

In this case, the data actually had to be copied and it’s super slow (it takes seconds instead of
nanoseconds). When the array is first created, it is laid out in memory row-by-row (see image
above). The transpose le� the data laid out in memory column-by-column. To see why the
copying of data was inevitable, look at what happens to this smaller (2 ✕ 3) matrix a�er
transposi�on and reshaping. You can verify for yourself there is no way to get the final array
based on the first array and some clever se�ng of the strides :

from numpy.lib.stride_tricks import as_strided

a = np.array([1., 2., 3., 4., 5.])

as_strided(a, shape=(5, 100_000_000_000), strides=(8, 0))

Create a large array

a = np.random.rand(10_000, 20_000)

%%timeit -n 1 -r 1

a.T.reshape(40_000, 5_000)

a = np.array([[1, 2, 3], [4, 5, 6]])

print('Original array:')

print(a)

print('\nTransposed:')
print(a.T)

print('\nTransposed and then reshaped:')

print(a.T.reshape(2, 3))

https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides

Copy versus view

Whenever NumPy constructs a new array by modifying the strides instead of copying data,
we way it created a “view”. This also happens when we select only a por�on of an exis�ng
matrix. Whenever a view is created, the numpy.ndarray object will have a reference to the
original array in its base a�ribute:

Warning

When you create a large array and select only a por�on of it, the large array will stay in
memory if a view was created!

The new array b object has a pointer to the same memory buffer as the array it has been
derived from:

Views are created by virtue of modifying the value of the shape a�ribute and, if necessary,
apply an offset to the pointer into the memory buffer so it no longer points to the start of the
buffer, but somewhere in the middle:

array "a" array "b"

.shape

.strides
.shape
.strides

data pointer data pointer

memory buffer

a = np.zeros((5, 5))

print(a.base) # None

b = a[:2, :2]
print(b.base.shape) # (5, 5)

print(a.__array_interface__['data'])

print(b.__array_interface__['data'])

b = a[1:3, 1:3] # This view does not start at the beginning

offset = b.__array_interface__['data'][0] - a.__array_interface__['data'][0]
print('Offset:', offset, 'bytes') # Offset: 48 bytes

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.base.html#numpy.ndarray.base
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape

Since the base array and its derived view share the same memory, any changes to the data in
a view also affects the data in the base array:

Whenever you index an array, NumPy will a�empt to create a view. Whether or not that
succeeds depends on the memory layout of the array and what kind of indexing opera�on
was done. If no view can be created, NumPy will create a new array and copy over the
selected data:

See also

Guide to Numpy
NumPy manual

Basic array class reference
Indexing
ufuncs
Advanced NumPy: Master stride tricks with 25 illustrated exercises

 Keypoints

The best way to make your code more efficient is to learn more about the NumPy API
and use specialized func�ons whenever possible.
NumPy will avoid copying data whenever it can. Whether it can depends on what kind
of layout the data is currently in.

Pandas

❓ Ques�ons

How do I learn a new Python package?
How can I use pandas dataframes in my research?

 Objec�ves

Learn simple and some more advanced usage of pandas dataframes
Get a feeling for when pandas is useful and know where to find more informa�on
Understand enough of pandas to be able to read its documenta�on.

b[0, 0] = 1.

print(a) # Original matrix was modified

c = a[[0, 2]] # Select rows 0 and 2
print(c.base) # None. So not a view.

http://web.mit.edu/dvp/Public/numpybook.pdf
https://numpy.org/doc/stable/reference/
https://numpy.org/doc/stable/reference/arrays.html
https://numpy.org/doc/stable/reference/arrays.indexing.html
https://numpy.org/doc/stable/reference/ufuncs.html
https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20

Pandas is a Python package that provides high-performance and easy to use data structures
and data analysis tools. This page provides a brief overview of pandas, but the open source
community developing the pandas package has also created excellent documenta�on and
training material, including:

A Ge�ng started guide (including tutorials and a 10 minute flash intro)
A “10 minutes to Pandas” tutorial
Thorough Documenta�on containing a user guide, API reference and contribu�on guide
A cheatsheet
A cookbook

A quick Pandas preview

Run code

Let’s get a flavor of what we can do with pandas (you won’t be able to follow everything yet).
We will be working with an example dataset containing the passenger list from the Titanic,
which is o�en used in Kaggle compe��ons and data science tutorials. First step is to load
pandas:

We can download the data from this GitHub repository by visi�ng the page and saving it to
disk, or by directly reading into a DataFrame :

We can now view the dataframe to get an idea of what it contains and print some summary
sta�s�cs of its numerical data:

Ok, so we have informa�on on passenger names, survival (0 or 1), age, �cket fare, number of
siblings/spouses, etc. With the summary sta�s�cs we see that the average age is 29.7 years,
maximum �cket price is 512 USD, 38% of passengers survived, etc.

import pandas as pd

url = "https://raw.githubusercontent.com/pandas-dev/pandas/master/doc/data/titanic.csv"

titanic = pd.read_csv(url, index_col='Name')

print the first 5 lines of the dataframe
titanic.head()

print summary statistics for each column

titanic.describe()

https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/docs/user_guide/10min.html#min
https://pandas.pydata.org/docs/
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/docs/user_guide/cookbook.html#cookbook
https://raw.githubusercontent.com/pandas-dev/pandas/master/doc/data/titanic.csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Let’s say we’re interested in the survival probability of different age groups. With two one-
liners, we can find the average age of those who survived or didn’t survive, and plot
corresponding histograms of the age distribu�on (pandas.DataFrame.groupby() ,
pandas.DataFrame.hist()):

Clearly, pandas dataframes allows us to do advanced analysis with very few commands, but
it takes a while to get used to how dataframes work so let’s get back to basics.

 Ge�ng help

Series and DataFrames have a lot func�onality, but how can we find out what methods
are available and how they work? One way is to visit the API reference and reading
through the list. Another way is to use the autocomple�on feature in Jupyter and type
e.g. titanic["Age"]. in a notebook and then hit TAB twice - this should open up a list
menu of available methods and a�ributes.

Jupyter also offers quick access to help pages (docstrings) which can be more efficient
than searching the internet. Two ways exist:

Write a func�on name followed by ques�on mark and execute the cell, e.g. write
titanic.hist? and hit SHIFT + ENTER .

Write the func�on name and hit SHIFT + TAB .
Right click and select “Show contextual help”. This tab will update with help for
anything you click.

What’s in a dataframe?

As we saw above, pandas dataframes are a powerful tool for working with tabular data. A
pandas pandas.DataFrame is composed of rows and columns:

print(titanic.groupby("Survived")["Age"].mean())

titanic.hist(column='Age', by='Survived', bins=25, figsize=(8,10),

 layout=(2,1), zorder=2, sharex=True, rwidth=0.9);

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist
https://pandas.pydata.org/docs/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

column

DataFrame

row

Each column of a dataframe is a pandas.Series object - a dataframe is thus a collec�on of
series:

Unlike a NumPy array, a dataframe can combine mul�ple data types, such as numbers and
text, but the data in each column is of the same type. So we say a column is of type int64 or
of type object .

Let’s inspect one column of the Titanic passenger list data (first downloading and reading the
�tanic.csv datafile into a dataframe if needed, see above):

The columns have names. Here’s how to get them (columns):

print some information about the columns

titanic.info()

titanic["Age"]

titanic.Age # same as above

type(titanic["Age"]) # a pandas Series object

titanic.columns

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.columns.html#pandas.DataFrame.columns

However, the rows also have names! This is what Pandas calls the index :

We saw above how to select a single column, but there are many ways of selec�ng (and
se�ng) single or mul�ple rows, columns and values. We can refer to columns and rows either
by their name (loc , at) or by their index (iloc , iat):

Dataframes also support boolean indexing, just like we saw for numpy arrays:

What if your dataset has missing data? Pandas uses the value numpy.nan to represent
missing data, and by default does not include it in any computa�ons. We can find missing
values, drop them from our dataframe, replace them with any value we like or do forward or
backward filling:

Exercises 1

✍ Exploring dataframes

titanic.index

titanic.loc['Lam, Mr. Ali',"Age"] # select single value by row and column

titanic.loc[:'Lam, Mr. Ali',"Survived":"Age"] # slice the dataframe by row and column
names

titanic.iloc[0:2,3:6] # same slice as above by row and column

numbers

titanic.at['Lam, Mr. Ali',"Age"] = 42 # set single value by row and column *name*
(fast)

titanic.at['Lam, Mr. Ali',"Age"] # select single value by row and column

name (fast)

titanic.iat[0,5] # select same value by row and column

number (fast)

titanic["is_passenger"] = True # set a whole column

titanic[titanic["Age"] > 70]

".str" creates a string object from a column

titanic[titanic.index.str.contains("Margaret")]

titanic.isna() # returns boolean mask of NaN values

titanic.dropna() # drop missing values

titanic.dropna(how="any") # or how="all"

titanic.dropna(subset=["Cabin"]) # only drop NaNs from one column

titanic.fillna(0) # replace NaNs with zero
titanic.fillna(method='ffill') # forward-fill NaNs

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html#pandas.DataFrame.index
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html#pandas.DataFrame.loc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.at.html#pandas.DataFrame.at
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html#pandas.DataFrame.iloc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iat.html#pandas.DataFrame.iat
https://numpy.org/doc/stable/reference/constants.html#numpy.nan

Have a look at the available methods and a�ributes using the API reference or the
autocomplete feature in Jupyter.
Try out a few methods using the Titanic dataset and have a look at the docstrings
(help pages) of methods that pique your interest
Compute the mean age of the first 10 passengers by slicing and the
pandas.DataFrame.mean() method

(Advanced) Using boolean indexing, compute the survival rate (mean of “Survived”
values) among passengers over and under the average age.

✔ Solu�on

Mean age of the first 10 passengers:

or:

or:

Survival rate among passengers over and under average age:

and:

Tidy data

The above analysis was rather straigh�orward thanks to the fact that the dataset is �dy.

titanic.iloc[:10,:]["Age"].mean()

titanic.loc[:"Nasser, Mrs. Nicholas (Adele Achem)","Age"].mean()

titanic.iloc[:10,4].mean()

titanic[titanic["Age"] > titanic["Age"].mean()]["Survived"].mean()

titanic[titanic["Age"] < titanic["Age"].mean()]["Survived"].mean()

https://pandas.pydata.org/docs/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html#pandas.DataFrame.mean

In short, columns should be variables and rows should be measurements, and adding
measurements (rows) should then not require any changes to code that reads the data.

What would un�dy data look like? Here’s an example from some run �me sta�s�cs from a
1500 m running event:

What makes this data un�dy is that the column names 400, 800, 1200, 1500 indicate the
distance ran. In a �dy dataset, this distance would be a variable on its own, making each
runner-distance pair a separate observa�on and hence a separate row.

To make un�dy data �dy, a common opera�on is to “melt” it, which is to convert it from wide
form to a long form:

In this form it’s easier to filter, group, join and aggregate the data, and it’s also easier to
model rela�onships between variables.

The opposite of mel�ng is to pivot data, which can be useful to view data in different ways as
we’ll see below.

For a detailed exposi�on of data �dying, have a look at this ar�cle.

runners = pd.DataFrame([

 {'Runner': 'Runner 1', 400: 64, 800: 128, 1200: 192, 1500: 240},

 {'Runner': 'Runner 2', 400: 80, 800: 160, 1200: 240, 1500: 300},
 {'Runner': 'Runner 3', 400: 96, 800: 192, 1200: 288, 1500: 360},

])

runners = pd.melt(runners, id_vars="Runner",

 value_vars=[400, 800, 1200, 1500],

 var_name="distance",
 value_name="time"

)

http://vita.had.co.nz/papers/tidy-data.pdf

Working with dataframes

We saw above how we can read in data into a dataframe using the read_csv() func�on.
Pandas also understands mul�ple other formats, for example using read_excel , read_hdf ,
read_json , etc. (and corresponding methods to write to file: to_csv , to_excel , to_hdf ,
to_json , etc.)

But some�mes you would want to create a dataframe from scratch. Also this can be done in
mul�ple ways, for example star�ng with a numpy array (see DataFrame docs):

or a dic�onary (see same docs):

There are many ways to operate on dataframes. Let’s look at a few examples in order to get a
feeling of what’s possible and what the use cases can be.

We can easily split and concatenate dataframes:

When pulling data from mul�ple dataframes, a powerful pandas.DataFrame.merge method is
available that acts similarly to merging in SQL. Say we have a dataframe containing the age of
some athletes:

import numpy as np

dates = pd.date_range('20130101', periods=6)

df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df

df = pd.DataFrame({'A': ['dog', 'cat', 'dog', 'cat', 'dog', 'cat', 'dog', 'dog'],

 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],

 'C': np.array([3] * 8, dtype='int32'),

 'D': np.random.randn(8),
 'E': np.random.randn(8)})

df

sub1, sub2, sub3 = df[:2], df[2:4], df[4:]

pd.concat([sub1, sub2, sub3])

age = pd.DataFrame([
 {"Runner": "Runner 4", "Age": 18},

 {"Runner": "Runner 2", "Age": 21},

 {"Runner": "Runner 1", "Age": 23},

 {"Runner": "Runner 3", "Age": 19},

])

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html#pandas.read_excel
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html#pandas.read_hdf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html#pandas.DataFrame.to_excel
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_hdf.html#pandas.DataFrame.to_hdf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html#pandas.DataFrame.merge

We now want to use this table to annotate the original runners table from before with their
age. Note that the runners and age dataframes have a different ordering to it, and age has
an entry for Dave which is not present in the runners table. We can let Pandas deal with all
of it using the merge method:

In fact, much of what can be done in SQL is also possible with pandas.

groupby is a powerful method which splits a dataframe and aggregates data in groups. To
see what’s possible, let’s return to the Titanic dataset. Let’s test the old saying “Women and
children first”. We start by crea�ng a new column Child to indicate whether a passenger
was a child or not, based on the exis�ng Age column. For this example, let’s assume that you
are a child when you are younger than 12 years:

Now we can test the saying by grouping the data on Sex and then crea�ng further sub-
groups based on Child :

Here we chose to summarize the data by its mean, but many other common sta�s�cal
func�ons are available as dataframe methods, like std , min , max , cumsum , median , skew ,
var etc.

Exercises 2

✍ Analyze the Titanic passenger list dataset

Add the age for each runner

runners.merge(age, on="Runner")

titanic["Child"] = titanic["Age"] < 12

titanic.groupby(["Sex", "Child"])["Survived"].mean()

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html#pandas.DataFrame.merge
https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.std.html#pandas.DataFrame.std
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.min.html#pandas.DataFrame.min
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.max.html#pandas.DataFrame.max
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.cumsum.html#pandas.DataFrame.cumsum
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.median.html#pandas.DataFrame.median
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.skew.html#pandas.DataFrame.skew
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.var.html#pandas.DataFrame.var

In the Titanic passenger list dataset, inves�gate the family size of the passengers (i.e.
the “SibSp” column).

What different family sizes exist in the passenger list? Hint: try the unique()
method
What are the names of the people in the largest family group?
(Advanced) Create histograms showing the distribu�on of family sizes for
passengers split by the fare, i.e. one group of high-fare passengers (where the fare
is above average) and one for low-fare passengers (Hint: instead of an exis�ng
column name, you can give a lambda func�on as a parameter to hist() to
compute a value on the fly. For example lambda x: "Poor" if df["Fare"].loc[x] <
df["Fare"].mean() else "Rich").

✔ Solu�on

Exis�ng family sizes:

We get 8 from above. There is no Name column, since we made Name the index
when we loaded the dataframe with read_csv , so we use pandas.DataFrame.index
to get the names. So, names of members of largest family(ies):

Histogram of family size based on fare class:

Time series superpowers

An introduc�on of pandas wouldn’t be complete without men�on of its special abili�es to
handle �me series. To show just a few examples, we will use a new dataset of Nobel prize
laureates available through an API of the Nobel prize organisa�on at
h�ps://api.nobelprize.org/v1/laureate.csv .

Unfortunately this API does not allow “non-browser requests”, so pandas.read_csv will not
work directly on it. Instead, we put a local copy on Github which we can access (the original
data is CC-0, so we are allowed to do this). (Aside: if you do JupyterLab → File → Open from

titanic["SibSp"].unique()

titanic[titanic["SibSp"] == 8].index

titanic.hist("SibSp",
 lambda x: "Poor" if titanic["Fare"].loc[x] <

titanic["Fare"].mean() else "Rich",

 rwidth=0.9)

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.unique.html#pandas.Series.unique
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html#pandas.DataFrame.index
https://api.nobelprize.org/v1/laureate.csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv

URL → paste the URL above, it will open it in JupyterLab and download a copy for your use.)

We can then load and explore the data:

This dataset has three columns for �me, “born”/”died” and “year”. These are represented as
strings and integers, respec�vely, and need to be converted to date�me format.
pandas.to_datetime() makes this easy:

Pandas knows a lot about dates (using .dt accessor):

We can add a column containing the (approximate) lifespan in years rounded to one decimal:

and then plot a histogram of lifespans:

Finally, let’s see one more example of an informa�ve plot (boxplot()) produced by a single
line of code:

nobel = pd.read_csv("https://github.com/AaltoSciComp/python-for-

scicomp/raw/master/resources/data/laureate.csv")

nobel.head()

the errors='coerce' argument is needed because the dataset is a bit messy

nobel["born"] = pd.to_datetime(nobel["born"], errors ='coerce')

nobel["died"] = pd.to_datetime(nobel["died"], errors ='coerce')

nobel["year"] = pd.to_datetime(nobel["year"], format="%Y")

print(nobel["born"].dt.day)
print(nobel["born"].dt.year)

print(nobel["born"].dt.weekday)

nobel["lifespan"] = round((nobel["died"] - nobel["born"]).dt.days / 365, 1)

nobel.hist(column='lifespan', bins=25, figsize=(8,10), rwidth=0.9)

nobel.boxplot(column="lifespan", by="category")

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#dt-accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html#pandas.DataFrame.boxplot

Exercises 3

✍ Analyze the Nobel prize dataset

What country has received the largest number of Nobel prizes, and how many?
How many countries are represented in the dataset? Hint: use the describe
method on the bornCountryCode column.
Create a histogram of the age when the laureates received their Nobel prizes. Hint:
follow the above steps we performed for the lifespan.
List all the Nobel laureates from your country.

Now more advanced steps:

Now define an array of 4 countries of your choice and extract only laureates from
these countries (you need to look at the data and find how countries are wri�en,
and replace COUNTRY with those strings):

Use groupby() to compute how many nobel prizes each country received in each
category. The size() method tells us how many rows, hence nobel prizes, are in
each group:

(Op�onal) Create a pivot table to view a spreadsheet like structure, and view it

First add a column “number” to the nobel dataframe containing 1’s (to
enable the coun�ng below). We need to make a copy of subset , because
right now it is only a view:

Then create the pivot_table() :

(Op�onal) Install the seaborn visualiza�on library if you don’t already have it, and
create a heatmap of your table:

countries = np.array([COUNTRY1, COUNTRY2, COUNTRY3, COUNTRY4])

subset = nobel.loc[nobel['bornCountry'].isin(countries)]

nobel.groupby(['bornCountry', 'category']).size()

subset = subset.copy()

subset.loc[:, 'number'] = 1

table = subset.pivot_table(values="number", index="bornCountry",

columns="category", aggfunc=np.sum)

import seaborn as sns
sns.heatmap(table,linewidths=.5);

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.describe.html#pandas.Series.describe
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot_table.html#pandas.DataFrame.pivot_table

Play around with other nice looking plots:

✔ Solu�on

Below is solu�ons for the basic steps, advanced steps are inline above.

We use the describe() method:

We see that the US has received the largest number of Nobel prizes, and 81 countries
are represented.

To calculate the age at which laureates receive their prize, we need to ensure that the
“year” and “born” columns are in date�me format:

Then we add a column with the age at which Nobel prize was received and plot a
histogram:

sns.violinplot(y=subset["year"].dt.year, x="bornCountry", inner="stick",

data=subset);

sns.swarmplot(y="year", x="bornCountry", data=subset, alpha=.5);

subset_physchem = nobel.loc[nobel['bornCountry'].isin(countries) &

(nobel['category'].isin(['physics']) |

nobel['category'].isin(['chemistry']))]

sns.catplot(x="bornCountry", y="year", col="category", data=subset_physchem,

kind="swarm");

sns.catplot(x="bornCountry", col="category", data=subset_physchem,

kind="count");

nobel.bornCountryCode.describe()

count 956

unique 81
top US

freq 287

nobel["born"] = pd.to_datetime(nobel["born"], errors ='coerce')

nobel["year"] = pd.to_datetime(nobel["year"], format="%Y")

We can print names of all laureates from a given country, e.g.:

Beyond the basics

Larger DataFrame opera�ons might be faster using eval() with string expressions, see:

Adding dataframes the pythonic way yields:

And by using eval() :

We can assign func�on return lists as dataframe columns:

nobel["age_nobel"] = round((nobel["year"] - nobel["born"]).dt.days / 365, 1)

nobel.hist(column="age_nobel", bins=25, figsize=(8,10), rwidth=0.9)

nobel[nobel["country"] == "Sweden"].loc[:, "firstname":"surname"]

import pandas as pd

Make some really big dataframes

nrows, ncols = 100000, 100

rng = np.random.RandomState(42)

df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols))
 for i in range(4))

%timeit df1 + df2 + df3 + df4

80ms

%timeit pd.eval('df1 + df2 + df3 + df4')

40ms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.eval.html#pandas.eval
https://jakevdp.github.io/PythonDataScienceHandbook/03.12-performance-eval-and-query.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.eval.html#pandas.eval

There is much more to Pandas than what we covered in this lesson. Whatever your needs
are, chances are good there is a func�on somewhere in its API. You should try to get good at
searching the web for an example showing what you can do. And when there is not, you can
always apply your own func�ons to the data using apply :

Note that the numpy precision for integers caps at int64 while python ints are unbounded –
limited by memory size. Thus, the result from fibonacci(99) would be erroneous when using
numpy ints. The type of df[‘Number of Rabbits’][99] given by both func�ons above is in fact
<class ‘int’>.

Alternatives to Pandas

Polars

Polars is a DataFrame library designed to processing data with a fast ligh�ng �me. Polars is
implemented in Rust Programming language and uses Apache Arrow as its memory format.

Dask

def fibo(n):

 """Compute Fibonacci numbers. Here we skip the overhead from the

 recursive function calls by using a list. """
 if n < 0:

 raise NotImplementedError('Not defined for negative values')

 elif n < 2:

 return n

 memo = [0]*(n+1)
 memo[0] = 0

 memo[1] = 1

 for i in range(2, n+1):

 memo[i] = memo[i-1] + memo[i-2]

 return memo

df = pd.DataFrame({'Generation': np.arange(100)})

df['Number of Rabbits'] = fibo(99) # Assigns list to column

from functools import lru_cache

@lru_cache

def fib(x):

 """Compute Fibonacci numbers. The @lru_cache remembers values we

 computed before, which speeds up this function a lot."""

 if x < 0:
 raise NotImplementedError('Not defined for negative values')

 elif x < 2:

 return x

 else:

 return fib(x - 2) + fib(x - 1)

df = pd.DataFrame({'Generation': np.arange(100)})

df['Number of Rabbits'] = df['Generation'].apply(fib)

https://pandas.pydata.org/docs/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html#pandas.DataFrame.apply
https://pola.rs/
https://arrow.apache.org/docs/format/Columnar.html

Dask is a Python package for parallel compu�ng in Python and uses parallel data-frames for
dealing with very large arrays.

Vaex

Vaex is a high performance Python library for lazy Out-of-Core DataFrames, to visualize and
explore big tabular datasets.

 Keypoints

pandas dataframes are a good data structure for tabular data
Dataframes allow both simple and advanced analysis in very compact form

Xarray

❓ Ques�ons

How shall we deal with real-world datasets that are usually more than just raw
numbers?
What is the advantage of using labelled mul�dimensional arrays?
What does Xarray add to Numpy and Pandas to address these ques�ons?

 Objec�ves

Learn how to apply opera�ons over dimensions and select values by label
Understand Xarray’s DataArrays and Datasets
Learn how to easily plot data in Xarray
Learn how to turn your own data into an Xarray Dataset

We have already seen how Pandas simplifies working with tabular NumPy data by adding
labels to columns and rows. In this lesson, we take a look at how xarray can be used to add
the same func�onality to mul�dimensional data. Let’s consider the following example:

Imagine we have a dataset represen�ng temperature measurements across different heights,
la�tudes, and longitudes. We can store the temperature data as a 3D NumPy array where
each axis corresponds to one of these dimensions:

Let’s assume now we want to take a look at a specific value in the dataset at a certain height,
la�tude, and longitude. We could do this by indexing the array with the corresponding
indices:

import numpy as np

Create a 3D numpy array: height x latitude x longitude

data = np.random.rand(10, 5, 5) # 10 heights, 5 latitudes, 5 longitudes

https://www.dask.org/
https://github.com/vaexio/vaex

OK, we got a value, but how do we know whether this value corresponds to the correct
height, la�tude and longitude? Are we sure that la�tude was the second dimension in the
dataset? Was it the second or third index that corresponds to the correct posi�on? In pure
NumPy, we are mostly le� in the dark and need to manually keep track of these things.

Unfortunately, Pandas isn’t of much help either since it is not designed for data with more
than 2 dimensions. Fortunately, some clever climate scien�sts have come up with a solu�on
to this problem and created Xarray.

What is Xarray?

Xarray is a powerful Python library that introduces labelled mul�dimensional arrays. This
means the axes have labels (=dimensions), each row/column has a label (coordinates), and
labels can even have units of measurement. This makes it much easier to follow what the
data in an array means and select specific por�ons of data.

We will first download a dataset similar to the example above to illustrate the advantages of
Xarray. We will cover how to transform your own data into an Xarray Dataset later in this
lecture.

 Note

If you have set up your python-for-scicomp environment yesterday or earlier, you need to
install the packages netcdf4 and pythia_datasets manually. You can do this by running
the following command in your (JupyterLab) terminal:

Let us open a python shell and download a public dataset:

We can now import xarray and open the dataset. Le’ts take a look at what it contains:

Get the temperature at height 3, latitude 2, longitude 4

temperature = data[3, 2, 4]

conda install netcdf4 pythia-datasets -c conda-forge

>>> from pythia_datasets import DATASETS

>>> filepath = DATASETS.fetch('NARR_19930313_0000.nc')

https://github.com/pydata/xarray/graphs/contributors

That was a lot of informa�on at once, but let’s break it down.

Close to the top of the output we see the Dimensions of the dataset: time1 ,
isobaric1 , y , and x .

Below the dimensions, we see the Coordinates of the dataset. These are for each
dimension the labels for each value along that dimension. For example, we have a
�mestamp of each value along the first dimension (time1).
The Data variables are the actual data stored in the dataset. We see that the dataset
contains a bunch of arrays, most of which are 4-dimensional, where each dimension
corresponds to one of the Dimensions described above. There are also some 2-
dimensional arrays that only have some of the Dimensions described above.
At the bo�om, we see the Attributes of the dataset. This is a dic�onary that stores
metadata about the dataset.

The following image shows the structure of this par�cular Xarray Dataset:

>>> import xarray as xr

>>> ds = xr.open_dataset(filepath)

>>> ds
<xarray.Dataset> Size: 15MB

Dimensions: (time1: 1, isobaric1: 29, y: 119, x: 268)

Coordinates:

 * time1 (time1) datetime64[ns] 8B 1993-03-13

 * isobaric1 (isobaric1) float32 116B 100.0 125.0 ... 1e+03
 * y (y) float32 476B -3.117e+03 ... 714.1

 * x (x) float32 1kB -3.324e+03 ... 5.343e+03

Data variables:

 u-component_of_wind_isobaric (time1, isobaric1, y, x) float32 4MB ...

 LambertConformal_Projection int32 4B ...
 lat (y, x) float64 255kB ...

 lon (y, x) float64 255kB ...

 Geopotential_height_isobaric (time1, isobaric1, y, x) float32 4MB ...

 v-component_of_wind_isobaric (time1, isobaric1, y, x) float32 4MB ...

 Temperature_isobaric (time1, isobaric1, y, x) float32 4MB ...
Attributes:

 Originating_or_generating_Center: US National Weather Service, Nation...

 Originating_or_generating_Subcenter: North American Regional Reanalysis ...

 GRIB_table_version: 0,131

 Generating_process_or_model: North American Regional Reanalysis ...
 Conventions: CF-1.6

 history: Read using CDM IOSP GribCollection v3

 featureType: GRID

 History: Translated to CF-1.0 Conventions by...

 geospatial_lat_min: 10.753308882144761
 geospatial_lat_max: 46.8308828962289

 geospatial_lon_min: -153.88242040519995

 geospatial_lon_max: -42.666108129242815

Accessing and manipulating data in Xarray

An xarray Dataset typically consists of mul�ple DataArrays . Our example dataset has 7 of
them (u-component_of_wind_isobaric , LambertConformal_Projection , lat , lon ,
Geopotential_height_isobaric , v-component_of_wind_isobaric , Temperature_isobaric). We

can select a single DataArray from the dataset using a dic�onary-like syntax:

>>> temperature_data = ds['Temperature_isobaric']

>>> temperature_data

<xarray.DataArray 'Temperature_isobaric' (time1: 1, isobaric1: 29, y: 119,
 x: 268)> Size: 4MB

[924868 values with dtype=float32]

Coordinates:

 * time1 (time1) datetime64[ns] 8B 1993-03-13

 * isobaric1 (isobaric1) float32 116B 100.0 125.0 150.0 ... 950.0 975.0 1e+03
 * y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 ... 681.6 714.1

 * x (x) float32 1kB -3.324e+03 -3.292e+03 ... 5.311e+03 5.343e+03

Attributes:

 long_name: Temperature @ Isobaric surface

 units: K
 description: Temperature

 grid_mapping: LambertConformal_Projection

 Grib_Variable_Id: VAR_7-15-131-11_L100

 Grib1_Center: 7

 Grib1_Subcenter: 15
 Grib1_TableVersion: 131

 Grib1_Parameter: 11

 Grib1_Level_Type: 100

 Grib1_Level_Desc: Isobaric surface

Xarray uses Numpy(-like) arrays under the hood, we can always access the underlying Numpy
array using the .values a�ribute:

Xarray allows you to select data using the .sel() method, which uses the labels of the
dimensions to extract data:

We can s�ll access the same data by index using the .isel() method:

>>> temperature_numpy = ds['Temperature_isobaric'].values

>>> temperature_numpy

array([[[[201.88957, 202.2177 , 202.49895, ..., 195.10832, 195.23332,
 195.37395],

 [201.68645, 202.0302 , 202.3427 , ..., 195.24895, 195.38957,

 195.51457],

 [201.5302 , 201.87395, 202.20207, ..., 195.37395, 195.51457,

 195.63957],
 ...,

 [276.735 , 276.70374, 276.6881 , ..., 289.235 , 289.1725 ,

 289.07874],

 [276.86 , 276.84436, 276.78186, ..., 289.1881 , 289.11 ,

 289.01624],
 [277.01624, 276.82874, 276.82874, ..., 289.14124, 289.0475 ,

 288.96936]]]], dtype=float32)

>>> ds['Temperature_isobaric'].sel(x='-3292.0078')

<xarray.DataArray 'Temperature_isobaric' (time1: 1, isobaric1: 29, y: 119)> Size: 14kB

array([[[202.2177 , 202.0302 , ..., 219.67082, 219.74895],
 [202.58566, 202.58566, ..., 219.16379, 219.28879],

 ...,

 [292.1622 , 292.14658, ..., 275.05283, 275.11533],

 [294.1256 , 294.14124, ..., 276.84436, 276.82874]]], dtype=float32)

Coordinates:
 * time1 (time1) datetime64[ns] 8B 1993-03-13

 * isobaric1 (isobaric1) float32 116B 100.0 125.0 150.0 ... 950.0 975.0 1e+03

 * y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 ... 681.6 714.1

 x float32 4B -3.292e+03

Attributes:
 long_name: Temperature @ Isobaric surface

 units: K

 description: Temperature

 grid_mapping: LambertConformal_Projection

 Grib_Variable_Id: VAR_7-15-131-11_L100
 Grib1_Center: 7

 Grib1_Subcenter: 15

 Grib1_TableVersion: 131

 Grib1_Parameter: 11
 Grib1_Level_Type: 100

 Grib1_Level_Desc: Isobaric surface

A DataArray provides a lot of the func�onality we expect from Numpy arrays, such as
sum() , mean() , median() , min() , and max() that we can use these methods to aggregate

data over one or mul�ple dimensions:

Let’s take a look at a concrete example and compare it to NumPy. We will calculate the max
temperature over the ‘isobaric1’ dimension at a specific value for x:

>>> ds['Temperature_isobaric'].isel(x=1)

<xarray.DataArray 'Temperature_isobaric' (time1: 1, isobaric1: 29, y: 119)> Size: 14kB

array([[[202.2177 , 202.0302 , ..., 219.67082, 219.74895],
 [202.58566, 202.58566, ..., 219.16379, 219.28879],

 ...,

 [292.1622 , 292.14658, ..., 275.05283, 275.11533],

 [294.1256 , 294.14124, ..., 276.84436, 276.82874]]], dtype=float32)

Coordinates:
 * time1 (time1) datetime64[ns] 8B 1993-03-13

 * isobaric1 (isobaric1) float32 116B 100.0 125.0 150.0 ... 950.0 975.0 1e+03

 * y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 ... 681.6 714.1

 x float32 4B -3.292e+03

Attributes:
 long_name: Temperature @ Isobaric surface

 units: K

 description: Temperature

 grid_mapping: LambertConformal_Projection

 Grib_Variable_Id: VAR_7-15-131-11_L100
 Grib1_Center: 7

 Grib1_Subcenter: 15

 Grib1_TableVersion: 131

 Grib1_Parameter: 11

 Grib1_Level_Type: 100
 Grib1_Level_Desc: Isobaric surface

>>> # Calculate the mean over the 'isobaric1' dimension

>>> ds['Temperature_isobaric'].mean(dim='isobaric1')

<xarray.DataArray 'Temperature_isobaric' (time1: 1, y: 119, x: 268)> Size: 128kB

array([[[259.88446, 259.90222, 259.91678, ..., 262.61667, 262.6285 ,
 262.65167],

 [259.74866, 259.76752, 259.78638, ..., 262.5757 , 262.58218,

 262.57516],

 [259.6156 , 259.63498, 259.65115, ..., 262.52075, 262.51215,

 262.4976],
 ...,

 [249.8796 , 249.83649, 249.79501, ..., 254.43617, 254.49059,

 254.54985],

 [249.8505 , 249.80202, 249.75244, ..., 254.37044, 254.42378,
 254.47711],

 [249.82195, 249.75998, 249.71204, ..., 254.30956, 254.35805,

 254.41139]]], dtype=float32)

Coordinates:

 * time1 (time1) datetime64[ns] 8B 1993-03-13
 * y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 ... 681.6 714.1

 * x (x) float32 1kB -3.324e+03 -3.292e+03 ... 5.311e+03 5.343e+03

In comparison, if we were to use plain Numpy, this would be:

As you can see, the Xarray code is much more readable and we didn’t need to keep track of
the right indices and order of the dimensions.

Plotting data in Xarray

Like Pandas, Xarray comes with basic plo�ng capabili�es. We can easily plot data in 1D and
2D using the .plot() method. Xarray uses a widely used plo�ng library called matplotlib for
this. When calling the .plot() method, Xarray checks the dimensionality of the data and
plots it accordingly. Let’s import matplotlib and plot the data:

For a 2D DataArray the plot would resemble this example:

>>> # Xarray

>>> ds['Temperature_isobaric'].sel(x='-3259.5447').max(dim='isobaric1')

array([[294.11 , 294.14124, 294.1256 , 294.0475 , 293.90686, 293.6256 ,
 ...,

 276.46936, 276.59436, 276.6881 , 276.78186, 276.82874]],

 dtype=float32)

>>> # NumPy

>>> np.max(temperature_numpy[:, :, :, 2], axis = 1)
array([[294.11 , 294.14124, 294.1256 , 294.0475 , 293.90686, 293.6256 ,

 ...,

 276.46936, 276.59436, 276.6881 , 276.78186, 276.82874]],

 dtype=float32)

>>> import matplotlib.pyplot as plt

>>> ds['Temperature_isobaric'].isel(x=2).plot()

>>> plt.show()

Note, that we didn’t specify the axes labels, Xarray automa�cally used the coordinates of the
DataArray for the plot. This plot might not be one you include directly in a paper, but it is a
great way to quickly visualize your data.

Let’s have a look at a dataslice of 1D data:

The resul�ng plot detects the dimen�onality of the data and plots it accordingly:

>>> ds['Temperature_isobaric'].isel(x=2, y=5).plot()

>>> plt.show()

If the data has more than two dimensions, Xarray will plot a histogram of the data:

The resul�ng plot would look like this:

>>> ds['Temperature_isobaric'].plot()

>>> plt.show()

We can modify the plots by passing addi�onal arguments to the .plot() method. Since we
haven’t discussed the plo�ng library matplotlib in this course, we will not go into further
detail here. You can find more informa�on in the Xarray documenta�on.

Exercises 1

✍ Exercises: Xarray-1

Download the NARR_19930313_0000.nc dataset have a look at all Data variables. Calculate
the geopoten�al height at x=5148.3726 averaged over y and return the median value.
You can use the .plot() method to check on the way whether you use the correct
dimensions and indices.

✔ Solu�ons: Xarray-1

One way of calcula�ng this is:

>>> from pythia_datasets import DATASETS

>>> import xarray as xr
>>>

>>> filepath = DATASETS.fetch('NARR_19930313_0000.nc')

>>> ds = xr.open_dataset(filepath)

>>> ds['Geopotential_height_isobaric'].sel(x=5148.3726).mean('y').median()

<xarray.DataArray 'Geopotential_height_isobaric' ()> Size: 4B
array(4395.487, dtype=float32)

Coordinates:

 x float32 4B 5.148e+03

https://xarray.pydata.org/en/stable/plotting.html

Creating your own Xarray Dataset

Crea�ng your own Xarray Dataset is quite simple. We can create a Dataset from scratch
using basic Python data structures. Let’s create a simple weather dataset with pressure and
humidity data with the following script:

Converting Xarray objects to NumPy, Pandas and NetCDF

Another handy feature of Xarray is the simple conversion between Xarray objects, NumPy
arrays, Pandas DataFrames and even NetCDF files.

To convert an xarray DataArray to a NumPy array, you can use the .values a�ribute or the
.to_numpy() method:

import xarray as xr

import numpy as np

Define coordinates using basic Python lists

time = ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']

location = ['Location1', 'Location2', 'Location3']

Define data variables as numpy arrays
pressure_data = np.random.rand(5, 3) * 1000 # Random pressure data in hPa

humidity_data = np.random.rand(5, 3) * 100 # Random humidity data

Put everything together to create the Dataset

ds = xr.Dataset(
 data_vars = {

 "pressure": (["time", "location"], pressure_data),

 "humidity": (["time", "location"], humidity_data)

 },

 coords={
 "time": time,

 "location": location

 },

 attrs={

 "description": "Weather data",
 "creation_date": "2023-01-01",

 "author": "Data Scientist"

 }

)

Convert the 'pressure' DataArray to a NumPy array
pressure_numpy = ds['pressure'].values

or

pressure_numpy = ds['pressure'].to_numpy()

To convert the en�re Dataset or individual DataArrays to pandas DataFrames, use the
.to_dataframe() method:

To save the dataset as a NetCDF file, use the .to_netcdf() method:

Exercises 2

✍ Exercises: Xarray-2

Let’s change from climate science to finance for this example. Put the stock prices and
trading volumes of three companies in one dataset. Create an Xarray Dataset that uses
�me and company as dimensions and contains two DataArrays: stock_price and
trading_volume . You can download the data as a pandas DataFrame with the following

code:

As a last thing, add the currency of the stock prices as an a�ribute to the Dataset.

✔ Solu�ons: Xarray-2

We can use a script similar to this one:

Convert the entire Dataset to a DataFrame

df = ds.to_dataframe()

Convert a single DataArray to DataFrame
pressure_df = ds['pressure'].to_dataframe()

Save the Dataset as a NetCDF file

ds.to_netcdf('weather_data.nc')

import yfinance as yf

AAPL_df = yf.download("AAPL", start="2020-01-01", end="2024-01-01")

GOOGL_df = yf.download("GOOGL", start="2020-01-01", end="2024-01-01")

MSFT_df = yf.download("MSFT", start="2020-01-01", end="2024-01-01")

Advanced Topics

We have barely scratched the surface of all the features Xarray has to offer. Hopefully this
quick introduc�on has shown you whether Xarray is the right tool for your data analysis
needs. If you are interested in learning more about Xarray, here are some topics for further
reading:

Xarray integrates with Dask to support parallel computa�ons and streaming computa�on
on datasets that don’t fit into memory. If you work with datasets that are too large for
your memory, have a read of the chapter Parallel compu�ng with Dask in the Xarray
documenta�on.
If you want to accelerate Xarray opera�ons with your GPU, have a look at CuPy-Xarray.
Xarray can be combined with pint, a Python library that adds support for physical
quan��es to NumPy arrays. This blog post provides a good introduc�on to the topic.

import xarray as xr

import numpy as np

import yfinance as yf

start_date = "2020-01-01"

end_date = "2024-01-01"

AAPL_df = yf.download("AAPL", start=start_date, end=end_date)
GOOGL_df = yf.download("GOOGL", start=start_date, end=end_date)

MSFT_df = yf.download("MSFT", start=start_date, end=end_date)

stock_prices = np.array(
 [

 AAPL_df["Close"].values,

 GOOGL_df["Close"].values,

 MSFT_df["Close"].values,

]
)

trading_volumes = np.array(

 [

 AAPL_df["Volume"].values,
 GOOGL_df["Volume"].values,

 MSFT_df["Volume"].values,

]

)

companies = ["AAPL", "GOOGL", "MSFT"]

time = AAPL_df.index[:].strftime("%Y-%m-%d").tolist()

ds = xr.Dataset(
 {

 "stock_price": (["company", "time"], stock_prices[:, :, 0]),

 "trading_volume": (["company", "time"], trading_volumes[:, :, 0]),

 },
 coords={"time": time, "company": companies},

 attrs={"currency": "USD"},

)

https://docs.xarray.dev/en/stable/user-guide/dask.html
https://cupy-xarray.readthedocs.io/latest/
https://xarray.dev/blog/introducing-pint-xarray

You can extend Xarray with your own methods using the register_dataset_accessor()
method. This is a powerful feature that allows you to add custom methods to your own
Xarray Datasets.

Plotting with Matplotlib

❓ Ques�ons

What happens if you can’t automa�cally produce plots?
When to use Matplotlib for data visualiza�on?
When to prefer other libraries?

 Objec�ves

Be able to create simple plots with Matplotlib and tweak them
Know about object-oriented vs pyplot interfaces of Matplotlib
Be able to adapt gallery examples
Know how to look for help
Know that other tools exist

Repeatability/reproducibility

From Claus O. Wilke: “Fundamentals of Data Visualiza�on”:

One thing I have learned over the years is that automa�on is your friend. I think figures should
be autogenerated as part of the data analysis pipeline (which should also be automated), and
they should come out of the pipeline ready to be sent to the printer, no manual post-processing
needed.

Try to minimize manual post-processing. This could bite you when you need to regenerate
50 figures one day before submission deadline or regenerate a set of figures a�er the
person who created them le� the group.
There is not the one perfect language and not the one perfect library for everything.
Within Python, many libraries exist:

Matplotlib: probably the most standard and most widely used
Seaborn: high-level interface to Matplotlib, sta�s�cal func�ons built in
Vega-Altair: declara�ve visualiza�on, sta�s�cs built in (we have an en�re lesson about
data visualiza�on using Vega-Altair)
Plotly: interac�ve graphs
Bokeh: also here good for interac�vity
plotnine: implementa�on of a grammar of graphics in Python, it is based on ggplot2
ggplot: R users will be more at home
PyNGL: used in the weather forecast community
K3D: Jupyter Notebook extension for 3D visualiza�on
…

https://docs.xarray.dev/en/stable/generated/xarray.register_dataset_accessor.html
https://clauswilke.com/dataviz/
https://matplotlib.org/stable/gallery/index.html
https://seaborn.pydata.org/examples/index.html
https://altair-viz.github.io/gallery/index.html
https://coderefinery.github.io/data-visualization-python/
https://coderefinery.github.io/data-visualization-python/
https://plotly.com/python/
https://demo.bokeh.org/
https://plotnine.readthedocs.io/
https://ggplot2.tidyverse.org/
https://yhat.github.io/ggpy/
https://www.pyngl.ucar.edu/Examples/gallery.shtml
https://k3d-jupyter.org/gallery/index.html

Two main families of libraries: procedural (e.g. Matplotlib) and declara�ve.

Why are we starting with Matplotlib?

Matplotlib is perhaps the most popular Python plo�ng library.
Many libraries build on top of Matplotlib (example: Seaborn).
MATLAB users will feel familiar.
Even if you choose to use another library (see above list), chances are high that you need
to adapt a Matplotlib plot of somebody else.
Libraries that are built on top of Matplotlib may need knowledge of Matplotlib for
custom adjustments.

However it is a rela�vely low-level interface for drawing (in terms of abstrac�ons, not in
terms of quality) and does not provide sta�s�cal func�ons. Some figures require typing and
tweaking many lines of code.

Many other visualiza�on libraries exist with their own strengths, it is also a ma�er of
personal preferences.

Getting started with Matplotlib

We can start in a Jupyter Notebook since notebooks are typically a good fit for data
visualiza�ons. But if you prefer to run this as a script, this is also OK.

Let us create our first plot using subplots() , scatter , and some other methods on the
Axes object:

import matplotlib.pyplot as plt

this is dataset 1 from
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

data_x = [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]

data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

fig, ax = plt.subplots()

ax.scatter(x=data_x, y=data_y, c="#E69F00")

ax.set_xlabel("we should label the x axis")

ax.set_ylabel("we should label the y axis")
ax.set_title("some title")

uncomment the next line if you would like to save the figure to disk

fig.savefig("my-first-plot.png")

https://seaborn.pydata.org/examples/index.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.scatter.html#matplotlib.axes.Axes.scatter
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes

This is the result of our first plot.

When running a Matplotlib script on a remote server without a “display” (e.g. compute
cluster), you may need to add the matplotlib.use call:

Exercise: Matplotlib

✍ Exercise Matplotlib-1: extend the previous example (15 min)

Extend the previous plot by also plo�ng this set of values but this �me using a
different color (#56B4E9):

Then add another color (#009E73) which plots the second dataset, scaled by 2.0.

Try to add a legend to the plot with matplotlib.axes.Axes.legend() and searching the
web for clues on how to add labels to each dataset. You can also consult this great
quick start guide.

import matplotlib.pyplot as plt
matplotlib.use("Agg")

... rest of the script

this is dataset 2

data2_y = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]

here we multiply all elements of data2_y by 2.0

data2_y_scaled = [y * 2.0 for y in data2_y]

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/getting-started.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/getting-started.png
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.use
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/stable/users/explain/quick_start.html

At the end it should look like this one:

Experiment also by using named colors (e.g. “red”) instead of the hex-codes.

✔ Solu�on

import matplotlib.pyplot as plt

this is dataset 1 from

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

data_x = [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]

data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

this is dataset 2

data2_y = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]

here we multiply all elements of data2_y by 2.0

data2_y_scaled = [y * 2.0 for y in data2_y]

fig, ax = plt.subplots()

ax.scatter(x=data_x, y=data_y, c="#E69F00", label="set 1")

ax.scatter(x=data_x, y=data2_y, c="#56B4E9", label="set 2")
ax.scatter(x=data_x, y=data2_y_scaled, c="#009E73", label="set 2 (scaled)")

ax.set_xlabel("we should label the x axis")

ax.set_ylabel("we should label the y axis")

ax.set_title("some title")
ax.legend()

uncomment the next line if you would like to save the figure to disk

fig.savefig("exercise-plot.png")

💬Why these colors?

This qualita�ve color pale�e is op�mized for all color-vision deficiencies, see
h�ps://clauswilke.com/dataviz/color-pi�alls.html and Okabe, M., and K. Ito. 2008. “Color
Universal Design (CUD): How to Make Figures and Presenta�ons That Are Friendly to
Colorblind People”.

Matplotlib has two different interfaces

When plo�ng with Matplotlib, it is useful to know and understand that there are two
approaches even though the reasons of this dual approach is outside the scope of this
lesson.

The more modern op�on is an object-oriented interface or explicit interface (the fig
and ax objects can be configured separately and passed around to func�ons):

The more tradi�onal op�on mimics MATLAB plo�ng and uses the pyplot interface or
implicit interface (plt carries the global se�ngs):

import matplotlib.pyplot as plt

this is dataset 1 from
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

data_x = [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]

data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

fig, ax = plt.subplots()

ax.scatter(x=data_x, y=data_y, c="#E69F00")

ax.set_xlabel("we should label the x axis")

ax.set_ylabel("we should label the y axis")
ax.set_title("some title")

import matplotlib.pyplot as plt

this is dataset 1 from

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
data_x = [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]

data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

plt.scatter(x=data_x, y=data_y, c="#E69F00")

plt.xlabel("we should label the x axis")

plt.ylabel("we should label the y axis")

plt.title("some title")

https://clauswilke.com/dataviz/color-pitfalls.html
http://jfly.iam.u-tokyo.ac.jp/color/
http://jfly.iam.u-tokyo.ac.jp/color/
http://jfly.iam.u-tokyo.ac.jp/color/
https://matplotlib.org/stable/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

When searching for help on the internet, you will find both approaches, they can also be
mixed. Although the pyplot interface looks more compact, we recommend to learn and use
the object oriented interface.

💬Why do we emphasize this?

One day you may want to write func�ons which wrap around Matplotlib func�on calls
and then you can send Figure and Axes into these func�ons and there is less risk that
adjus�ng figures changes se�ngs also for unrelated figures created in other func�ons.

When using the pyplot interface, se�ngs are modified for the en�re matplotlib.pyplot
package. The la�er is acceptable for simple scripts but may yield surprising results when
introducing func�ons to enhance/abstract Matplotlib calls.

Styling and customizing plots

Before you customize plots “manually” using a graphical program, please consider how
this affects reproducibility.
Try to minimize manual post-processing. This might bite you when you need to
regenerate 50 figures one day before submission deadline or regenerate a set of figures
a�er the person who created them le� the group.
Matplotlib and also all the other libraries allow to customize almost every aspect of a
plot.
It is useful to study Matplotlib parts of a figure so that we know what to search for to
customize things.
Matplotlib cheatsheets: h�ps://github.com/matplotlib/cheatsheets
You can also select among pre-defined themes/ style sheets with use , for instance:

Exercises: Styling and customization

Here are 3 exercises where we try to adapt exis�ng scripts to either tweak how the plot
looks (exercises 1 and 2) or to modify the input data (example 3).

This is very close to real life: there are so many op�ons and possibili�es and it is almost
impossible to remember everything so this strategy is useful to prac�ce:

Select an example that is close to what you have in mind
Being able to adapt it to your needs
Being able to search for help
Being able to understand help request answers (not easy)

plt.style.use('ggplot')

https://matplotlib.org/stable/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure
https://github.com/matplotlib/cheatsheets
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/api/style_api.html#matplotlib.style.use

✍ Exercise Customiza�on-1: log scale in Matplotlib (15 min)

In this exercise we will learn how to use log scales.

To demonstrate this we first fetch some data to plot:

Try the above snippet in a notebook and it will give you an overview over the data.
Then we can plot the data, first using a linear scale:

This is the result but we realize that a linear scale is not ideal here:

import pandas as pd

url = (

"https://raw.githubusercontent.com/plotly/datasets/master/gapminder_with_codes.csv"

)

gapminder_data = pd.read_csv(url).query("year == 2007")

gapminder_data

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.scatter(x=gapminder_data["gdpPercap"], y=gapminder_data["lifeExp"],

alpha=0.5)

ax.set_xlabel("GDP per capita (PPP dollars)")

ax.set_ylabel("Life expectancy (years)")

Your task is to switch to a log scale and arrive at this result:

What does alpha=0.5 do?

✔ Solu�on

See ax.set_xscale() .

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xscale.html#matplotlib.axes.Axes.set_xscale

alpha sets transparency of points.

✍ Exercise Customiza�on-2: preparing a plot for publica�on (15 min)

O�en we need to create figures for presenta�on slides and for publica�ons but both have
different requirements: for presenta�on slides you have the whole screen but for a figure
in a publica�on you may only have few cen�meters/inches.

For figures that go to print it is good prac�ce to look at them at the size they will be
printed in and then o�en fonts and �ckmarks are too small.

Your task is to make the �ckmarks and the axis label font larger, using Matplotlib parts of
a figure and web search, and to arrive at this:

fig, ax = plt.subplots()

ax.scatter(x=gapminder_data["gdpPercap"], y=gapminder_data["lifeExp"], alpha=0.5)

ax.set_xscale("log")

ax.set_xlabel("GDP per capita (PPP dollars)")

ax.set_ylabel("Life expectancy (years)")

https://matplotlib.org/stable/api/_as_gen/matplotlib.artist.Artist.set_alpha.html#matplotlib.artist.Artist.set_alpha
https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure
https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure

✔ Solu�on

See ax.tick_params .

💬 Discussion

A�er the exercises, the group can discuss their findings and it is important to clarify
ques�ons at this point before moving on.

Matplotlib and pandas DataFrames

In the above exercises we have sent individual columns of the gapminder_data DataFrame
into ax.scatter() like this:

It is possible to do this instead and let Matplotlib “unpack” the columns:

Other input types are possible. See Types of inputs to plo�ng func�ons.

 Keypoints

fig, ax = plt.subplots()

ax.scatter(x="gdpPercap", y="lifeExp", alpha=0.5, data=gapminder_data)

ax.set_xscale("log")

ax.set_xlabel("GDP per capita (PPP dollars)", fontsize=15)

ax.set_ylabel("Life expectancy (years)", fontsize=15)

ax.tick_params(which="major", length=10)

ax.tick_params(which="minor", length=5)

ax.tick_params(labelsize=15)

fig, ax = plt.subplots()

ax.scatter(x=gapminder_data["gdpPercap"], y=gapminder_data["lifeExp"], alpha=0.5)

fig, ax = plt.subplots()

ax.scatter(x="gdpPercap", y="lifeExp", alpha=0.5, data=gapminder_data)

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.tick_params.html#matplotlib.axes.Axes.tick_params
https://matplotlib.org/stable/users/explain/quick_start.html#types-of-inputs-to-plotting-functions

Minimize manual post-processing, script everything.
Browse a number of example galleries to help you choose the library that fits best
your work/style.
Figures for presenta�on slides and figures for manuscripts have different
requirements.
Think about color-vision deficiencies when choosing colors. Use exis�ng solu�ons for
this problem.

Plotting with Vega-Altair

 Objec�ves

Be able to create simple plots with Vega-Altair and tweak them
Know how to look for help
Reading data with Pandas from disk or a web resource
Know how to tweak example plots from a gallery for your own purpose
We will build up this notebook (spoiler alert!)

Instructor note

10 min: Introduc�on
10 min: Type-along (crea�ng a first plot)
20 min: Exercise (using visual channels)
20 min: Exercise (adap�ng a gallery example and customizing)
10 min: Key points, discussion, and Q&A

Repeatability/reproducibility

From Claus O. Wilke: “Fundamentals of Data Visualiza�on”:

One thing I have learned over the years is that automa�on is your friend. I think figures should
be autogenerated as part of the data analysis pipeline (which should also be automated), and
they should come out of the pipeline ready to be sent to the printer, no manual post-processing
needed.

Try to minimize manual post-processing. This could bite you when you need to regenerate
50 figures one day before submission deadline or regenerate a set of figures a�er the
person who created them le� the group.
There is not the one perfect language and not the one perfect library for everything.
Within Python, many libraries exist:

Vega-Altair: declara�ve visualiza�on, sta�s�cs built in
Matplotlib: probably the most standard and most widely used
Seaborn: high-level interface to Matplotlib, sta�s�cal func�ons built in
Plotly: interac�ve graphs
Bokeh: also here good for interac�vity

https://altair-viz.github.io/
https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting.ipynb
https://clauswilke.com/dataviz/
https://altair-viz.github.io/gallery/index.html
https://matplotlib.org/stable/gallery/index.html
https://seaborn.pydata.org/examples/index.html
https://plotly.com/python/
https://demo.bokeh.org/

plotnine: implementa�on of a grammar of graphics in Python, it is based on ggplot2
ggplot: R users will be more at home
PyNGL: used in the weather forecast community
K3D: Jupyter Notebook extension for 3D visualiza�on
Mayavi: 3D scien�fic data visualiza�on and plo�ng in Python
…

Two main families of libraries: procedural (e.g. Matplotlib) and declara�ve (e.g. Vega-
Altair).

Why are we starting with Vega-Altair?

Concise and powerful
“Simple, friendly and consistent API” allows us to focus on the data visualiza�on part and
get started without too much Python knowledge
The way it combines visual channels with data columns can feel intui�ve
Interfaces very nicely with Pandas (earlier episode)
Easy to change figures
Good documenta�on
Open source
Makes it easy to save figures in a number of formats (svg, png, html)
Easy to save interac�ve visualiza�ons to be used in websites

Example data: Weather data from two Norwegian cities

We will experiment with some example weather data obtained from Norsk
KlimaServiceSenter, Meteorologisk ins�tu� (MET) (CC BY 4.0). The data is in CSV format
(comma-separated values) and contains daily and monthly weather data for two ci�es in
Norway: Oslo and Tromsø. You can browse the data here in the lesson repository.

We will use the Pandas library to read the data into a dataframe. We have learned about
Pandas in an earlier episode.

Pandas can read from and write to a large set of formats (overview of input/output func�ons
and formats). We will load a CSV file directly from the web. Instead of using a web URL we
could use a local file name instead.

Pandas dataframes are a great data structure for tabular data and tabular data turns out to
be a great input format for data visualiza�on libraries. Vega-Altair understands Pandas
dataframes and can plot them directly.

Reading data into a dataframe

We can try this together in a notebook: Using Pandas we can merge, join, concatenate, and
compare dataframes, see h�ps://pandas.pydata.org/pandas-
docs/stable/user_guide/merging.html.

https://plotnine.readthedocs.io/
https://ggplot2.tidyverse.org/
https://yhat.github.io/ggpy/
https://www.pyngl.ucar.edu/Examples/gallery.shtml
https://k3d-jupyter.org/gallery/index.html
https://docs.enthought.com/mayavi/mayavi/
https://altair-viz.github.io/
https://pandas.pydata.org/
https://seklima.met.no/observations/
https://seklima.met.no/observations/
https://github.com/AaltoSciComp/python-for-scicomp/tree/master/resources/data/plotting
https://pandas.pydata.org/pandas-docs/stable/reference/io.html
https://pandas.pydata.org/pandas-docs/stable/reference/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Let us try to concatenate two dataframes: one for Tromsø weather data (we will now load
monthly values) and one for Oslo:

Before plo�ng the data, there is a problem which we may not see yet: Dates are not in a
standard date format (YYYY-MM-DD). We can fix this:

With Pandas it is possible to do a lot more (adjus�ng missing values, fixing inconsistencies,
changing format).

Plotting the data

Now let’s plot the data. We will start with a plot that is not op�mal and then we will explore
and improve a bit as we go:

import pandas as pd

url_prefix = "https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/plotting/"

data_tromso = pd.read_csv(url_prefix + "tromso-monthly.csv")

data_oslo = pd.read_csv(url_prefix + "oslo-monthly.csv")

data_monthly = pd.concat([data_tromso, data_oslo], axis=0)

let us print the combined result

data_monthly

replace mm.yyyy to date format
data_monthly["date"] = pd.to_datetime(list(data_monthly["date"]), format="%m.%Y")

import altair as alt

alt.Chart(data_monthly).mark_bar().encode(

 x="date",
 y="precipitation",

 color="name",

)

October December February April June August October
date

0

50

100

150

200

250

300

350

pr
ec

ip
ita

tio
n

Oslo - Blindern
Tromso - Langnes

name

Monthly precipita�on for the ci�es Oslo and Tromsø over the course of a year.

💬 Let us pause and explain the code

alt is a short-hand for altair which we imported on top of the notebook
Chart() is a func�on defined inside altair which takes the data as argument
mark_bar() is a func�on that produces bar charts
encode() is a func�on which encodes data columns to visual channels

Observe how we connect (encode) visual channels to data columns:

x-coordinate with “date”
y-coordinate with “precipita�on”
color with “name” (name of weather sta�on; city)

We can improve the plot by giving Vega-Altair a bit more informa�on that the x-axis is
temporal (T) and that we would like to see the year and month (yearmonth):

Apart from T (temporal), there are other encoding data types:

Q (quan�ta�ve)
O (ordinal)
N (nominal)

alt.Chart(data_monthly).mark_bar().encode(

 x="yearmonth(date):T",

 y="precipitation",
 color="name",

)

https://altair-viz.github.io/user_guide/encodings/index.html#encoding-data-types

T (temporal)
G (geojson)

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

0

50

100

150

200

250

300

350

pr
ec

ip
ita

tio
n

Oslo - Blindern
Tromso - Langnes

name

Monthly precipita�on for the ci�es Oslo and Tromsø over the course of a year.

Let us improve the plot with another one-line change:

name

0

50

100

150

200

250

pr
ec

ip
ita

tio
n

Oslo - Blindern Tromso - Langnes

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oslo - Blindern
Tromso - Langnes

name

Monthly precipita�on for the ci�es Oslo and Tromsø over the course of a year with with both ci�es
plo�ed side by side.

alt.Chart(data_monthly).mark_bar().encode(

 x="yearmonth(date):T",

 y="precipitation",
 color="name",

 column="name",

)

With another one-line change we can make the bar chart stacked:

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

0

50

100

150

200

250

pr
ec

ip
ita

tio
n

Oslo - Blindern
Tromso - Langnes

name

Monthly precipita�on for the ci�es Oslo and Tromsø over the course of a year plo�ed as stacked
bar chart.

This is not publica�on-quality yet but a really good start!

Let us try one more example where we can nicely see how Vega-Altair is able to map visual
channels to data columns:

alt.Chart(data_monthly).mark_bar().encode(

 x="yearmonth(date):T",

 y="precipitation",
 color="name",

 xOffset="name",

)

alt.Chart(data_monthly).mark_area(opacity=0.5).encode(

 x="yearmonth(date):T",
 y="max temperature",

 y2="min temperature",

 color="name",

)

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

−20

−15

−10

−5

0

5

10

15

20

25

30

35

m
ax

 te
m

pe
ra

tu
re

, m
in

 te
m

pe
ra

tu
re

Oslo - Blindern
Tromso - Langnes

name

Monthly temperature ranges for two ci�es in Norway.

💬What other marks and other visual channels exist?

Overview of available marks
Overview of available visual channels
Gallery of examples

Exercise: Using visual channels to re-arrange plots

✍ Plo�ng-1: Using visual channels to re-arrange plots

1. Try to reproduce the above plots if they are not already in your notebook.
2. Above we have plo�ed the monthly precipita�on for two ci�es side by side using a

stacked plot. Try to arrive at the following plot where months are along the y-axis and
the precipita�on amount is along the x-axis:

0 50 100 150 200 250
precipitation

Oct 2022

Nov 2022

Dec 2022

Jan 2023

Feb 2023

Mar 2023

Apr 2023

May 2023

Jun 2023

Jul 2023

Aug 2023

Sep 2023

Oct 2023

Nov 2023

da
te

 (y
ea

r-
m

on
th

)

Oslo - Blindern
Tromso - Langnes

name

https://altair-viz.github.io/user_guide/marks/index.html
https://altair-viz.github.io/user_guide/encodings/channels.html
https://altair-viz.github.io/gallery/index.html

3. Ask the Internet or AI how to change the axis �tle from “precipita�on” to
“Precipita�on (mm)”.

4. Modify the temperature range plot to show the temperature ranges for the two ci�es
side by side like this:

name

−20

−15

−10

−5

0

5

10

15

20

25

30

35

m
ax

 te
m

pe
ra

tu
re

, m
in

 te
m

pe
ra

tu
re

Oslo - Blindern Tromso - Langnes

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oslo - Blindern
Tromso - Langnes

name

✔ Solu�on

1. Copy-paste code blocks from above.
2. Basically we switched x and y:

3. This can be done with the following modifica�on:

4. We added one line:

alt.Chart(data_monthly).mark_bar().encode(

 y="yearmonth(date):T",

 x="precipitation",
 color="name",

 yOffset="name",

)

alt.Chart(data_monthly).mark_bar().encode(

 y="yearmonth(date):T",
 x=alt.X("precipitation").title("Precipitation (mm)"),

 color="name",

 yOffset="name",

)

alt.Chart(data_monthly).mark_area(opacity=0.5).encode(
 x="yearmonth(date):T",

 y="max temperature",

 y2="min temperature",

 color="name",

 column="name",
)

More fun with visual channels

Now we will try to plot the daily data and look at snow depths. We first read and
concatenate two datasets:

We adjust the data a bit:

Now we can plot the snow depths for the months December to May for the two ci�es:

url_prefix = "https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/plotting/"

data_tromso = pd.read_csv(url_prefix + "tromso-daily.csv")

data_oslo = pd.read_csv(url_prefix + "oslo-daily.csv")

data_daily = pd.concat([data_tromso, data_oslo], axis=0)

replace dd.mm.yyyy to date format
data_daily["date"] = pd.to_datetime(list(data_daily["date"]), format="%d.%m.%Y")

we are here only interested in the range december to may

data_daily = data_daily[

 (data_daily["date"] > "2022-12-01") & (data_daily["date"] < "2023-05-01")
]

alt.Chart(data_daily).mark_bar().encode(

 x="date",

 y="snow depth",

 column="name",
)

name

0

20

40

60

80

100

120
sn

ow
 d

ep
th

Oslo - Blindern Tromso - Langnes

December 2023 February March April May
date

December 2023 February March April May
date

Snow depth (in cm) for the months December 2022 to May 2023 for two ci�es in Norway.

What happens if we try to color the plot by the “max temperature” values?

The result looks neat:

name

0

20

40

60

80

100

120

sn
ow

 d
ep

th

Oslo - Blindern Tromso - Langnes

December 2023 February March April May
date

December 2023 February March April May
date

−5

0

5

10

15

max temperature

Snow depth (in cm) for the months December 2022 to May 2023 for two ci�es in Norway. Colored
by daily max temperature.

alt.Chart(data_daily).mark_bar().encode(

 x="date",
 y="snow depth",

 color="max temperature",

 column="name",

)

We can change the color scheme (available color schemes):

With the following result:

name

0

20

40

60

80

100

120

sn
ow

 d
ep

th

Oslo - Blindern Tromso - Langnes

December 2023 February March April May
date

December 2023 February March April May
date

−5

0

5

10

15

max temperature

Snow depth (in cm) for the months December 2022 to May 2023 for two ci�es in Norway. Colored
by daily max temperature. Warmer days are o�en followed by reduced snow depth.

Let’s try one more change to show that we can experiment with different plot types by
changing mark_bar() to something else, in this case mark_circle() :

alt.Chart(data_daily).mark_bar().encode(

 x="date",

 y="snow depth",
 color=alt.Color("max temperature").scale(scheme="plasma"),

 column="name",

)

alt.Chart(data_daily).mark_circle().encode(
 x="date",

 y="snow depth",

 color=alt.Color("max temperature").scale(scheme="plasma"),

 column="name",

)

https://vega.github.io/vega/docs/schemes/

name

0

20

40

60

80

100

120
sn

ow
 d

ep
th

Oslo - Blindern Tromso - Langnes

2023 February March April
date

2023 February March April
date

−5

0

5

10

15

max temperature

Snow depth (in cm) for the months December 2022 to May 2023 for two ci�es in Norway. Colored
by daily max temperature. Warmer days are o�en followed by reduced snow depth.

Themes

In Vega-Altair you can change the theme and select from a long list of themes. On top of your
notebook try to add:

Then re-run all cells. Later you can try some other themes such as:

fivethirtyeight

latimes

urbaninstitute

You can even define your own themes!

Exercise: Adapting a gallery example

In this exercise we can try to adapt exis�ng scripts to either tweak how the plot looks or to
modify the input data. This is very close to real life: there are so many op�ons and
possibili�es and it is almost impossible to remember everything so this strategy is useful to
prac�ce:

Select an example that is close to what you have in mind
Being able to adapt it to your needs
Being able to search for help

✍ Plo�ng-2: Adap�ng a gallery example

alt.themes.enable('dark')

https://altair-viz.github.io/
https://github.com/vega/vega-themes

This is a great exercise which is very close to real life.

Browse the Vega-Altair example gallery.
Select one example that is close to your current/recent visualiza�on project or simply
interests you.
First try to reproduce this example, as-is, in the Jupyter Notebook.
If you get the error “ModuleNotFoundError: No module named ‘vega_datasets’”, then
try one of these examples: (they do not need the “vega_datasets” module)

Slider cutoff (below you can find a walk-through for this example)
Mul�-Line tool�p
Heatmap
Layered histogram

Then try to print out the data that is used in this example just before the call of the
plo�ng func�on to learn about its structure. Consider wri�ng the data to file before
changing it.
Then try to modify the data a bit.
If you have �me, try to feed it different, simplified data. This will be key for adap�ng
the examples to your projects.

✔ Example walk-through for the slider cutoff example

In this walk-through I imagine browsing: h�ps://altair-viz.github.io/gallery/index.html

Then this example caught my eye: h�ps://altair-viz.github.io/gallery/slider_cutoff.html

I then copy-paste the example code into a notebook and try to run it and I get the
same result.

If you get stuck below, you can also browse all the steps in a notebook using
nbviewer.

Next, there is a lot of code that I don’t (need to) understand yet but my eyes are trying
to find alt.Chart which tells me that the data must be the “df” in alt.Chart(df) :

https://altair-viz.github.io/gallery/index.html
https://altair-viz.github.io/gallery/slider_cutoff.html
https://altair-viz.github.io/gallery/multiline_tooltip_standard.html
https://altair-viz.github.io/gallery/simple_heatmap.html
https://altair-viz.github.io/gallery/layered_histogram.html
https://altair-viz.github.io/gallery/index.html
https://altair-viz.github.io/gallery/slider_cutoff.html
https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting-exercise-2.ipynb
https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting-exercise-2.ipynb

My next step will be to print out the data df just before the call to alt.Chart :

The print reveals that df is a dataframe which contains x and y values:

import altair as alt

import pandas as pd

import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({

 'xval': range(100),
 'yval': rand.randn(100).cumsum()

})

slider = alt.binding_range(min=0, max=100, step=1)

cutoff = alt.param(bind=slider, value=50)

alt.Chart(df).mark_point().encode(

 x='xval',

 y='yval',

 color=alt.condition(
 alt.datum.xval < cutoff,

 alt.value('red'), alt.value('blue')

)

).add_params(

 cutoff
)

import altair as alt

import pandas as pd

import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({

 'xval': range(100),

 'yval': rand.randn(100).cumsum()
})

slider = alt.binding_range(min=0, max=100, step=1)

cutoff = alt.param(bind=slider, value=50)

print(df)

alt.Chart(df).mark_point().encode(

 x='xval',
 y='yval',

 color=alt.condition(

 alt.datum.xval < cutoff,

 alt.value('red'), alt.value('blue')

)
).add_params(

 cutoff

)

The next thing that o�en helps me is to save the data to a comma-separated values
(CSV) file:

I then open the file in an editor and see that it contains 100 rows:

Saving the data to file o�en helps me to see the structure of the data and now I am in
a posi�on to replace this with my own data. I create a file called “mydata.csv” and
there I use the maximum temperatures for months 1-10 from the Tromso monthly data
which we used further up:

 xval yval

0 0 0.496714

1 1 0.358450
2 2 1.006138

3 3 2.529168

4 4 2.295015

..

95 95 -10.712354
96 96 -10.416233

97 97 -10.155178

98 98 -10.150065

99 99 -10.384652

[100 rows x 2 columns]

import pandas as pd

df.to_csv("data.csv", index=False)

xval,yval
0,0.4967141530112327

1,0.358449851840048

2,1.0061383899407406

3,2.5291682463487657

4,2.2950148716254297
5,2.060877914676249

6,3.6400907301836405

7,4.407525459336549

8,3.938051073401597

9,4.4806111169875615
...

In the notebook I then verify that the reading of the data works:

Now I can replace the example with my own data (note how I now can comment out
some code that I don’t need any longer):

Seems to work! I then make few more adjustments (I want the slider to work on the y-
axis and have a more reasonable default):

xval,yval

01,7.7

02,6.6
03,4.5

04,9.8

05,17.7

06,25.4

07,26.7
08,25.1

09,19.3

10,9.8

mydata = pd.read_csv("mydata.csv")

mydata

import altair as alt

import pandas as pd

import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({

'xval': range(100),

'yval': rand.randn(100).cumsum()
})

slider = alt.binding_range(min=0, max=100, step=1)

cutoff = alt.param(bind=slider, value=50)

print(df)

df = pd.read_csv("mydata.csv")

alt.Chart(df).mark_point().encode(

 x='xval',
 y='yval',

 color=alt.condition(

 alt.datum.xval < cutoff,

 alt.value('red'), alt.value('blue')
)

).add_params(

 cutoff

)

My next steps would then be to change axis �tles, display the month names, add a
legend, and refine from here.

You can also browse all the steps in a notebook using nbviewer.

 Keypoints

Browse a number of example galleries to help you choose the library that fits best
your work/style.
Minimize manual post-processing and try to script all steps.
CSV (comma-separated values) files are o�en a good format to store the data that we
wish to plot.
Read the data into a Pandas dataframe and then plot it with Vega-Altair where you
connect data columns to visual channels.

Working with Data

❓ Ques�ons

How do you store your data right now?
Are you doing data cleaning / preprocessing every �me you load the data?

 Objec�ves

Learn benefits/drawbacks of common data formats.
Learn how you can read and write data in a variety of formats.

import altair as alt

import pandas as pd

slider = alt.binding_range(min=0, max=30, step=1)

cutoff = alt.param(bind=slider, value=15)

df = pd.read_csv("mydata.csv")

alt.Chart(df).mark_point().encode(

 x='xval',

 y='yval',

 color=alt.condition(

 alt.datum.yval < cutoff,
 alt.value('red'), alt.value('blue')

)

).add_params(

 cutoff

)

https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting-exercise-2.ipynb
https://altair-viz.github.io/user_guide/encodings/channels.html

Source: xkcd #2116

What is a data format?

Data format can mean two different things

1. data structure or how you’re storing the data in memory while you’re working on it;
2. file format or the way you’re storing the data in the disk.

Let’s consider this randomly generated DataFrame with various columns:

import pandas as pd

import numpy as np

n_rows = 100000

dataset = pd.DataFrame(

 data={

 'string': np.random.choice(('apple', 'banana', 'carrot'), size=n_rows),
 'timestamp': pd.date_range("20130101", periods=n_rows, freq="s"),

 'integer': np.random.choice(range(0,10), size=n_rows),

 'float': np.random.uniform(size=n_rows),

 },

)

dataset.info()

https://xkcd.com/2116/
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/File_format

This DataFrame is structured in the �dy data format. In �dy data we have mul�ple columns of
data that are collected in a Pandas DataFrame, where each column represents a value of a
specific type.

Let’s consider another example:

Here we have a different data structure: we have a two-dimensional array of numbers. This is
different to a Pandas DataFrame as data is stored as one con�guous block instead of
individual columns. This also means that the whole array must have one data type.

Source: Elegant Scipy

Now the ques�on is: Can the data be saved to the disk without changing the data format?

For this we need a file format that can easily store our data structure.

n = 1000

data_array = np.random.uniform(size=(n,n))
np.info(data_array)

https://github.com/elegant-scipy/elegant-scipy

 Data type vs. data structure vs. file format

Data type: Type of a single piece of data (integer, string, float, …).
Data structure: How the data is organized in memory (individual columns, 2D-array,
nested dic�onaries, …).
File format: How the data is organized when it is saved to the disk (columns of strings,
block of binary data, …).

For example, a black and white image stored as a .png-file (file format) might be stored in
memory as an NxM array (data structure) of integers (data type) with each entry
represen�ng the color value of the pixel.

What to look for in a file format?

When deciding which file format you should use for your program, you should remember the
following:

There is no file format that is good for every use case.

and

It is very likely, that a good format already exists for your use case.

There are, indeed, various standard file formats for various use cases:

Source: xkcd #927.

Usually, you’ll want to consider the following things when choosing a file format:

1. Is the file format good for my data structure (is it fast/space efficient/easy to use)?
2. Is everybody else / leading authori�es in my field recommending a certain format?
3. Do I need a human-readable format or is it enough to work on it using code?
4. Do I want to archive / share the data or do I just want to store it while I’m working?

https://xkcd.com/927/

Pandas supports many file formats for �dy data and Numpy supports some file formats for
array data. However, there are many other file formats that can be used through other
libraries.

Table below describes some data formats:

Name:
Human
readable:

Space
efficiency:

Arbitrary
data:

Tidy
data:

Array
data:

Long term
storage/sharing:

Pickle ❌ 🟨 ✅ 🟨 🟨 ❌

CSV ✅ ❌ ❌ ✅ 🟨 ✅

Feather ❌ ✅ ❌ ✅ ❌ ❌

Parquet ❌ ✅ 🟨 ✅ 🟨 ✅

npy ❌ 🟨 ❌ ❌ ✅ ❌

HDF5 ❌ ✅ ❌ ❌ ✅ ✅

NetCDF4 ❌ ✅ ❌ ❌ ✅ ✅

JSON ✅ ❌ 🟨 ❌ ❌ ✅

Excel ❌ ❌ ❌ 🟨 ❌ 🟨

Graph
formats 🟨 🟨 ❌ ❌ ❌ ✅

 Important

✅ : Good
🟨 : Ok / depends on a case
❌ : Bad

A more in-depth analysis of the file formats men�oned above, can be found here.

Pros and cons

Let’s have a general look at pros and cons of some types of file formats

Binary File formats

Good things

Can represent floa�ng point numbers with full precision.
Can poten�ally save lots of space, especially, when storing numbers.

https://pandas.pydata.org/docs/user_guide/io.html
https://numpy.org/doc/stable/reference/routines.io.html

Data reading and wri�ng is usually much faster than loading from text files, since the
format contains informa�on about the data structure, and thus memory alloca�on can be
done more efficiently.
More explicit specifica�on for storing mul�ple data sets and metadata in the same file.
Many binary formats allow for par�al loading of the data. This makes it possible to work
with datasets that are larger than your computer’s memory.

Bad things

Commonly requires the use of a specific library to read and write the data.
Library specific formats can be version dependent.
Not human readable.
Sharing can be more difficult (requires some exper�se to be able to read the data).
Might require more documenta�on efforts.

Textual formats

Good things

Human readable.
Easy to check for (structural) errors.
Supported by many tool out of the box.
Easily shared.

Bad things

Can be slow to read and write.
High poten�al to increase required disk space substan�ally (e.g. when storing floa�ng
point numbers as text).
Prone to losing precision when storing floa�ng point numbers.
Mul�-dimensional data can be hard to represent.
While the data format might be specified, the data structure might not be clear when
star�ng to read the data.

Further considerations

The closer your stored data is to the code, the more likely it depends on the environment
you are working in. If you pickle , e.g. a generated model, you can only be sure that the
model will work as intended if you load it in an environment that has the same versions of
all libraries the model depends on.

Exercise

✍ Exercise

You have a model that you have been training for a while. Lets assume it’s a rela�vely
simple neural network (consis�ng of a network structure and it’s associated weights).

Let’s consider 2 scenarios

A: You have a different project, that is supposed to take this model, and do some
processing with it to determine it’s efficiency a�er different �mes of training.

B: You want to publish the model and make it available to others.

What are good op�ons to store the model in each of these scenarios?

✔ Solu�on

A:

Some export into a binary format that can be easily read. E.g. pickle or a specific
export func�on from the library you use.

It also depends on whether you intend to make the intermediary steps available to
others. If you do, you might also want to consider storing structure and weights
separately or use a format specific for the type of model you are training to keep the
data independent of the library.

B:

You might want to consider a more general format that is supported by many libraries,
e.g. ONNX, or a format that is specifically designed for the type of model you are
training.

You might also want to consider addi�onally storing the model in a way that is easily
readable by humans, to make it easier for others to understand the model.

Case study: Converting untidy data to tidy data

Many data analysis tools (like Pandas) are designed to work with �dy data, but some data is
not in a suitable format. What we have seen o�en in the past is people then not using the
powerful tools, but write complicated scripts that extract individual pieces from the data
each �me they need to do a calcula�on.

As an example, let’s see how we can use country data from an example REST API endpoint
(for more informa�on on how to work with web APIs, see this page). Let’s get the data with
the following piece of code:

Let’s try to find the country with the largest popula�on.

An example of a “ques�onable” way of solving this problem would be something like the
following piece of code that is wri�en in pure Python:

This is a very natural way of wri�ng a solu�on for the problem, but it has major caveats:

1. We throw all of the other data out so we cannot answer any follow up ques�ons.
2. For bigger data, this would be very slow and ineffec�ve.
3. We have to write lots of code to do a simple thing.

Another typical solu�on would be something like the following code, which picks some of
the data and creates a Pandas dataframe out of it:

This solu�on has many of the same problems as the previous one, but now we can use
Pandas to do follow up analysis.

import json

import requests

url = 'https://api.sampleapis.com/countries/countries'

response = requests.get(url)

countries_json = json.loads(response.content)

max_population = 0

top_population_country = ''

for country in countries_json:

 if country.get('population', 0) > max_population:
 top_population_country = country['name']

 max_population = country.get('population', 0)

print(top_population_country)

import pandas as pd

countries_list = []

for country in countries_json:

 countries_list.append([country['name'], country.get('population',0)])

countries_df = pd.DataFrame(countries_list, columns=['name', 'population'])

print(countries_df.nlargest(1, 'population')['name'].values[0])

Be�er solu�on would be to use Pandas’ pandas.DataFrame.from_dict or
pandas.json_normalize to read the full data in:

 Key points

Convert your data to a format where it is easy to do analysis on it.
Check the tools you’re using if they have an exis�ng feature that can help you read the
data in.

Things to remember

1. There is no file format that is good for every use case.
2. Usually, your research ques�on determines which libraries you want to use to solve it.

Similarly, the data format you have determines file format you want to use.
3. However, if you’re using a previously exis�ng framework or tools or you work in a specific

field, you should priori�ze using the formats that are used in said framework/tools/field.
4. When you’re star�ng your project, it’s a good idea to take your ini�al data, clean it, and

store the results in a good binary format that works as a star�ng point for your future
analysis. If you’ve wri�en the cleaning procedure as a script, you can always reproduce it.

5. Throughout your work, you should use code to turn important data to a human-readable
format (e.g. plots, averages, pandas.DataFrame.head()), not to keep your full data in a
human-readable format.

6. Once you’ve finished, you should store the data in a format that can be easily shared to
other people.

See also

Pandas’ IO tools
Tidy data comparison notebook
Array data comparison notebook

 Keypoints

Pandas can read and write a variety of data formats.
There are many good, standard formats, and you don’t need to create your own.
There are plenty of other libraries dedicated to various formats.

countries_df = pd.DataFrame.from_dict(countries_json)

print(countries_df.nlargest(1, 'population')['name'].values[0])

countries_df = pd.json_normalize(countries_json)

print(countries_df.nlargest(1, 'population')['name'].values[0])

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.from_dict.html
https://pandas.pydata.org/docs/reference/api/pandas.json_normalize.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html#pandas.DataFrame.head
https://pandas.pydata.org/docs/user_guide/io.html
https://github.com/AaltoSciComp/python-for-scicomp/tree/master/extras/data-formats-comparison-tidy.ipynb
https://github.com/AaltoSciComp/python-for-scicomp/tree/master/extras/data-formats-comparison-array.ipynb

Scripts

❓ Ques�ons

Why are command line programs useful, compared to Jupyter notebooks and similar?
How to create a Python script?
How to generalize a Python script?

 Objec�ves

Learn how to streamline your Python notebooks by crea�ng repeatable Python scripts
Learn how to import other Python files
Learn to parse command line arguments in Python

Why scripts?

So far we have been learning Python using Jupyter notebooks. It is very convenient: it
allowed us to experiment and prototype Python code so we may think that is more than
enough for your day to day work.

But a�er several weeks of hard work with Python, you may end up:

either with 10 different notebooks (so that you can run them concurrently)
or with a very long notebook which is becoming hardly readable!

Let’s imagine you have created 10 notebooks to run for 10 different input parameters and
now you are willing to experiment with 1000 sets of input parameters. Suppose you find a
bug in the original notebook and need to rerun everything: are you willing to re-create
manually your 1000 notebooks?

In this episode, we will learn how to automate your work using Python scripts so that

you do not need to manually configure your notebooks to be able to run with different
parameters
can easily run you work via other tools, such as on compu�ng clusters.

From Jupyter notebooks to Python scripts

Save as Python script

Jupyter notebooks can be parameterized for instance using papermill. It can be an a�rac�ve
approach when you have short notebooks (to generate automa�cally plots/reports) but as
soon as you have more complex tasks to execute, we strongly recommend to generate

https://papermill.readthedocs.io/en/latest/

Python scripts. This will also force you to modularize your code. See CodeRefinery’s lesson
on Modular code development.

You need to convert the notebook to a Python file. Check the JupyterLab documenta�on for
more informa�on. You can get a command line by (File → New Launcher → Terminal - if you
go through New Launcher, your command line will be in the directory you are currently
browsing), you can convert files in the terminal by running:

If nbconvert doesn’t work, within JupyterLab, you can export any Jupyter notebook to a
Python script, but this downloads it to your own computer and then you need to copy it to a
place you are working (maybe upload it back to JupyterLab?):

Select File (top menu bar) → Export Notebook as → Export notebook to Executable Script.

Exercises 1

✍ Scripts-1

1. Download the weather_observa�ons.ipynb and upload them to your Jupyterlab.
The script plots the temperature data for Tapiola in Espoo. The data is originally from
rp5.kz and was slightly adjusted for this lecture.

$ jupyter nbconvert --to script your_notebook_name.ipynb

https://coderefinery.github.io/modular-type-along/
https://coderefinery.github.io/modular-type-along/
https://jupyterlab.readthedocs.io/en/stable/user/export.html
https://jupyterlab.readthedocs.io/en/stable/_images/exporting-menu.png
https://jupyterlab.readthedocs.io/en/stable/_images/exporting-menu.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
https://rp5.kz/

Hint: Copy the URL above (right-click) and in JupyterLab, use File → Open from URL
→ Paste the URL. It will both download it to the directory JupyterLab is in and open it
for you.

2. Open a terminal in Jupyter: File → New Launcher, then click “Terminal” there. (if you
do it this way, it will be in the right directory. File → New → Terminal might not be.)

3. Convert the Jupyter script to a Python script by calling:

4. Run the script (note: you may have python3 rather than python):

Command line arguments with sys.argv

We now have a Python script that is callable from the command line (e.g. for use on an HPC
system). However, this code is s�ll not adjustable, as we s�ll need to have a copy for each
single �me range we want to plot, or need to modify our file whenever we want to just
change parameters. What we need is to allow the code to do something different based on
something outside the code itself: in this case, to plot informa�on for different �me ranges.
This can be achieved by using Pythons sys package, which provides access to arguments
given to the Python interpreter at startup in the sys.argv list. The first (i.e. sys.argv[0]
entry of this array is the script that is running, and any further argument (separated by space)
is appended to this list, like such:

Lets see how it works: We modify the weather_observa�ons.py script such that we allow
start and end �mes as well as the output file to be passed in as arguments to the func�on.
Open it (find the .py file from the JupyterLab file browser) and make these edits:

$ jupyter nbconvert --to script weather_observations.ipynb

$ python weather_observations.py

$ python my_script.py A B
$ # sys.argv[1] is 'A'

$ # sys.argv[2] is 'B'

https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#module-sys
https://docs.python.org/3/library/sys.html#sys.argv

We can try it out (see the file spring_in_tapiola.png made in the file browser):

💬 Discussion

Does it work?
Why is this be�er than modifying the script every �me I want it to plot data for a
different period?
What problems do you expect when using this approach (using sys.argv)?

This approach is bri�le and more robust solu�ons exist that allow you to fully customize
your scripts and generate help texts at the same �me:

argparse: built-in to Python, this is the one that we will show below.
doctopt: you write the help text and this generates a parser for you.
click: another nice library for command line interfaces - very easy to use.

Parsing command line arguments with argparse

Argparse not only gives you descrip�ve command line arguments, it also automa�cally
generates a --help op�on for you. To use argparse you first set up a parser by calling
parser = argparse.ArgumentParser() and then you add arguments using
parser.add_argument(args) . There are two different types of arguments:

Posi�onal arguments
Op�onal arguments

import sys

import pandas as pd

define the start and end time for the plot

start_date = pd.to_datetime(sys.argv[1], dayfirst=True)

end_date = pd.to_datetime(sys.argv[2], dayfirst=True)

...

select the data

weather = weather[weather['Local time'].between(start_date,end_date)]

...

save the figure
output_file_name = sys.argv[3]

fig.savefig(output_file_name)

$ python weather_observations.py 01/03/2021 31/05/2021 spring_in_tapiola.png

https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/argparse.html
http://docopt.org/
https://click.palletsprojects.com/
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument

Posi�onal arguments are detected by their order, while op�onal arguments need to be given
with their respec�ve flags (like --name or -n). The following example would parse a
posi�onal argument Name of type string and an op�onal argument date of type string
which defaults to 01/01/2000 .

If this code was in birthday.py and we would call python birthday.py --help it would show
the following message:

Exercises 2

✍ Scripts-2

1. Take the Python script (weather_observations.py) we have wri�en in the preceding
exercise and use argparse to specify the input (URL) and output files and allow the
start and end dates to be set.

Hint: try not to do it all at once, but add one or two arguments, test, then add
more, and so on.
Hint: The input and output filenames make sense as posi�onal arguments, since
they must always be given. Input is usually first, then output.
Hint: The start and end dates should be op�onal parameters with the defaults as
they are in the current script.

import argparse

parser = argparse.ArgumentParser()
One positional and one optional argument

parser.add_argument('name', type=str, metavar="N",

 help="The name of the subject")

parser.add_argument('-d', '--date', type=string, default="01/01/2000",

 help="Birth date of the subject")

args = parser.parse_args()

print(args.name + " was born on " + args.date)

$ python birthday.py --help
usage: birthday.py [-h] [-d DATE] N

positional arguments:

 N The name of the subject

optional arguments:

 -h, --help show this help message and exit

 -d DATE, --date DATE Birth date of the subject

https://docs.python.org/3/library/argparse.html#module-argparse

2. Execute your script for a few different �me intervals (e.g. from January 2019 to June
2020, or from May 2020 to October 2020). Also try using this data for Cairo:
https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/scripts/weather_cairo.csv

✔ Solu�on

💬 Discussion

What was the point of doing this?

Now you can do this:

import pandas as pd

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("input", type=str, help="Input data file")

parser.add_argument("output", type=str, help="Output plot file")

parser.add_argument("-s", "--start", default="01/01/2019", type=str, help="Start

date in DD/MM/YYYY format")
parser.add_argument("-e", "--end", default="16/10/2021", type=str, help="End date

in DD/MM/YYYY format")

args = parser.parse_args()

load the data

weather = pd.read_csv(args.input,comment='#')

define the start and end time for the plot

start_date=pd.to_datetime(args.start, dayfirst=True)
end_date=pd.to_datetime(args.end, dayfirst=True)

preprocess the data

weather['Local time'] = pd.to_datetime(weather['Local time'], dayfirst=True)

select the data
weather = weather[weather['Local time'].between(start_date,end_date)]

plot the data

import matplotlib.pyplot as plt

start the figure.
fig, ax = plt.subplots()

ax.plot(weather['Local time'], weather['T'])

label the axes

ax.set_xlabel("Date of observation")

ax.set_ylabel("Temperature in Celsius")
ax.set_title("Temperature Observations")

adjust the date labels, so that they look nicer

fig.autofmt_xdate()

save the figure

fig.savefig(args.output)

We can now process different input files without changing the script.
We can select mul�ple �me ranges without modifying the script.
We can easily save these commands to know what we did.
This way we can also loop over file pa�erns (using shell loops or similar) or use the
script in a workflow management system and process many files in parallel.
By changing from sys.argv to argparse we made the script more robust against user
input errors and also got a help text (accessible via --help).

Load larger option lists using config files

In the above example we only allowed the input and output files along with start and end
dates to be selected by command line arguments. This already leads to a quite large
command line call. Now imagine, that we also want to allow the user to select more specific
informa�on from the dataset, define specific X and Y labels, write their own �tle etc. Now
imagine to put all this into the command line:

This is an even larger line, needs scrolling and becomes quite inconvenient to modify. Instead
of pu�ng all of this into the command line, you could think about storing and modifying the
arguments in a config file. There are several ways, how config files can be stored. You can use
a simple Parameter = Value format, and parse it yourself, or you can use e.g. the JSON or
YAML formats. For both parsers exist that can save you some work, and both formats also

allow you to use more complex input data, like lists, or dic�onaries. We won’t go into the
details of the formats, and will only give a short example using YAML here.

$ python weather_observations.py --help

$ python weather_observations.py

https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/scripts/weather_tapiola.csv temperature_tapiola.png

$ python weather_observations.py -s 1/12/2020 -e 31/12/2020

https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/scripts/weather_tapiola.csv

temperature_tapiola_dec.png
$ python weather_observations.py -s 1/2/2021 -e 28/2/2021

https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/scripts/weather_tapiola.csv

temperature_tapiola_feb.png

$ python weather_observations.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/scripts/weather_cairo.csv temperature_cairo.png

$ python weather_observations.py --input

https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/scripts/weather_cairo.csv --output rain_in_tapiola.png --
xlabel "Days in June" --ylabel "Rainfall in mm" --title "Rainfall in Cairo" --

data_column RRR --start 01/06/2021 --end 30/06/2021

https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/argparse.html#module-argparse

The YAML file format can be simple or very complex allowing a large variety of data
structures to be stored. One benefit of YAML is that there is already a Python module (yaml)
available for parsing it and it directly parses numbers as numbers and text as strings, making
conversions unnecessary (the same is true for JSON with the json package).

The Python module op�onsparser.py provides a simple parser for YAML styled op�ons
files. Similar to argparse, it takes a dict of required op�ons, along with a dict of op�onal
parameters. Required arguments need to specify a type. Op�onal argument types are derived
from their default values.

In our example above, we could for example add op�onal parameters that allow the selec�on
of other weather data from the dataset (precipita�on …), set the labels and �tles explicitly
etc.

In the YAML format, names and values are separated by : . Our above example would
therefore translate to the following YAML file:

Exercises 3 (optional)

✍ Scripts-3

1. Download the op�onsparser.py func�on and load it into your working folder in
Jupyterlab (Hint: in JupyterLab, File → Open from URL). Modify the previous script to
use a config file parser to read all arguments. The config file is passed in as a single
argument on the command line (using e.g. argparse or sys.argv) s�ll needs to be
read from the command line.

2. Run your script with different config files.

✔ Solu�on

The modified weather_observa�ons.py script:

input: https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/scripts/weather_cairo.csv

output: rain_in_cairo.png
xlabel: Days in June

ylabel: Rainfall in mm

title: Rainfall in Cairo

data_column: RRR

start: 01/06/2021
end: 30/06/2021

https://pyyaml.org/
https://docs.python.org/3/library/json.html#module-json
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/sys.html#sys.argv

#!/usr/bin/env python

coding: utf-8

import pandas as pd

from optionsparser import get_parameters

import argparse

Lets start reading our confg file. we'll use argparse to get the config file.
parser = argparse.ArgumentParser()

parser.add_argument('input', type=str,

 help="Config File name ")

args = parser.parse_args()

Set optional parameters with default values and required parameter values with

their type

defaults = {

 "xlabel" : "Date of observation",

 "title" : "Weather Observations",
 "start" : "01/06/2021",

 "end" : "01/10/2021",

 "output" : "weather.png",

 "ylabel" : "Temperature in Celsius",

 "data_column" : "T",
 }

required = {

 "input" : str

 }

now, parse the config file

parameters = get_parameters(args.input, required, defaults)

load the data
weather = pd.read_csv(parameters.input,comment='#')

obtain start and end date

start_date=pd.to_datetime(parameters.start, dayfirst=True)
end_date=pd.to_datetime(parameters.end, dayfirst=True)

Data preprocessing

weather['Local time'] = pd.to_datetime(weather['Local time'], dayfirst=True)

select the data
weather = weather[weather['Local time'].between(start_date,end_date)]

Data plotting

import matplotlib.pyplot as plt

start the figure.
fig, ax = plt.subplots()

ax.plot(weather['Local time'], weather['T'])

label the axes

ax.set_xlabel("Date of observation")

ax.set_ylabel("Temperature in Celsius")
ax.set_title("Temperature Observations")

adjust the date labels, so that they look nicer

fig.autofmt_xdate()

save the figure

fig.savefig(parameters.output)

What did this config file parser get us? Now, we have separated the code from the
configura�on. We could save all the configura�on in version control - separately and have
one script that runs them. If done right, our work could be much more reproducible and
understandable.

 Further reading

Linking Jupyterlab notebooks to python scripts (making linking .py - and .ipynb -files
easier) using jupytext
The wikipedia page about YAML contains a lot of addi�onal informa�on on the YAML
syntax.
The Coderefinery Lesson about reproducible research can give addi�onal informa�on
about good coding prac�ces and workflow automa�on.
CodeRefinery’s lesson on Modular code development

Profiling

 Objec�ves

Understand when improving code performance is worth the �me and effort.
Knowing how to find performance bo�lenecks in Python code.
Try scalene as one of many tools to profile Python code.

Instructor note

Discussion: 20 min
Exercise: 20 min

Should we even optimize the code?

Classic quote to keep in mind: “Premature op�miza�on is the root of all evil.” [Donald Knuth]

💬 Discussion

It is important to ask ourselves whether it is worth it.

Is it worth spending e.g. 2 days to make a program run 20% faster?
Is it worth op�mizing the code so that it spends 90% less memory?

Depends. What does it depend on?

https://jupytext.readthedocs.io/en/latest/paired-notebooks.html
https://en.wikipedia.org/wiki/YAML
https://coderefinery.github.io/reproducible-research/
https://coderefinery.github.io/modular-type-along/

Measure instead of guessing

Before doing code surgery to op�mize the run �me or lower the memory usage, we should
measure where the bo�lenecks are. This is called profiling.

Analogy: Medical doctors don’t start surgery based on guessing. They first measure (X-ray,
MRI, …) to know precisely where the problem is.

Not only programming beginners can otherwise guess wrong, but also experienced
programmers can be surprised by the results of profiling.

One of the simplest tools is to insert timers

Below we will list some tools that can be used to profile Python code. But even without
these tools you can find �me-consuming parts of your code by inser�ng �mers:

Many tools exist

The list below here is probably not complete, but it gives an overview of the different tools
available for profiling Python code.

CPU profilers:

cProfile and profile
line_profiler
py-spy
Yappi
pyinstrument
Perfe�o

Memory profilers:

import time

...

code before the function

start = time.time()
result = some_function()

print(f"some_function took {time.time() - start} seconds")

code after the function
...

https://docs.python.org/3/library/profile.html
https://kernprof.readthedocs.io/
https://github.com/benfred/py-spy
https://github.com/sumerc/yappi
https://pyinstrument.readthedocs.io/
https://perfetto.dev/docs/analysis/trace-processor-python

memory_profiler (not ac�vely maintained)
Pympler
tracemalloc
guppy/heapy

Both CPU and memory:

Scalene

In the exercise below, we will use Scalene to profile a Python program. Scalene is a sampling
profiler that can profile CPU, memory, and GPU usage of Python.

Tracing profilers vs. sampling profilers

Tracing profilers record every func�on call and event in the program, logging the exact
sequence and dura�on of events.

Pros:
Provides detailed informa�on on the program’s execu�on.
Determinis�c: Captures exact call sequences and �mings.

Cons:
Higher overhead, slowing down the program.
Can generate larger amount of data.

Sampling profilers periodically samples the program’s state (where it is and how much
memory is used), providing a sta�s�cal view of where �me is spent.

Pros:
Lower overhead, as it doesn’t track every event.
Scales be�er with larger programs.

Cons:
Less precise, poten�ally missing infrequent or short calls.
Provides an approxima�on rather than exact �ming.

💬 Analogy: Imagine we want to op�mize the London Underground (subway) system

We wish to detect bo�lenecks in the system to improve the service and for this we have
asked few passengers to help us by tracking their journey.

Tracing: We follow every train and passenger, recording every stop and delay. When
passengers enter and exit the train, we record the exact �me and loca�on.
Sampling: Every 5 minutes the phone no�fies the passenger to note down their
current loca�on. We then use this informa�on to es�mate the most crowded sta�ons
and trains.

https://pypi.org/project/memory-profiler/
https://pympler.readthedocs.io/
https://docs.python.org/3/library/tracemalloc.html
https://github.com/zhuyifei1999/guppy3/
https://github.com/plasma-umass/scalene

Choosing the right system size

Some�mes we can configure the system size (for instance the �me step in a simula�on or the
number of �me steps or the matrix dimensions) to make the program finish sooner.

For profiling, we should choose a system size that is representa�ve of the real-world use
case. If we profile a program with a small input size, we might not see the same bo�lenecks
as when running the program with a larger input size.

O�en, when we scale up the system size, or scale the number of processors, new bo�lenecks
might appear which we didn’t see before. This brings us back to: “measure instead of
guessing”.

Exercises

✍ Exercise: Prac�cing profiling

In this exercise we will use the Scalene profiler to find out where most of the �me is spent
and most of the memory is used in a given code example.

Please try to go through the exercise in the following steps:

1. Make sure scalene is installed in your environment (if you have followed this course
from the start and installed the recommended so�ware environment, then it is).

2. Download Leo Tolstoy’s “War and Peace” from the following link (the text is provided
by Project Gutenberg): h�ps://www.gutenberg.org/cache/epub/2600/pg2600.txt
(right-click and “save as” to download the file and save it as “book.txt”).

3. Before you run the profiler, try to predict in which func�on the code (the example
code is below) will spend most of the �me and in which func�on it will use most of
the memory.

4. Save the example code as example.py and run the scalene profiler on the following
code example and browse the generated HTML report to find out where most of the
�me is spent and where most of the memory is used:

Alterna�vely you can do this (and then open the generated file in a browser):

You can find an example of the generated HTML report in the solu�on below.

5. Does the result match your predic�on? Can you explain the results?

$ scalene example.py

$ scalene example.py --html > profile.html

https://www.gutenberg.org/
https://www.gutenberg.org/cache/epub/2600/pg2600.txt

Example code (example.py):

✔ Solu�on

"""

The code below reads a text file and counts the number of unique words in it

(case-insensitive).
"""

import re

def count_unique_words1(file_path: str) -> int:
 with open(file_path, "r", encoding="utf-8") as file:

 text = file.read()

 words = re.findall(r"\b\w+\b", text.lower())

 return len(set(words))

def count_unique_words2(file_path: str) -> int:

 unique_words = []

 with open(file_path, "r", encoding="utf-8") as file:

 for line in file:
 words = re.findall(r"\b\w+\b", line.lower())

 for word in words:

 if word not in unique_words:

 unique_words.append(word)

 return len(unique_words)

def count_unique_words3(file_path: str) -> int:

 unique_words = set()

 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:

 words = re.findall(r"\b\w+\b", line.lower())

 for word in words:

 unique_words.add(word)

 return len(unique_words)

def main():

 # book.txt is downloaded from
https://www.gutenberg.org/cache/epub/2600/pg2600.txt

 _result = count_unique_words1("book.txt")

 _result = count_unique_words2("book.txt")

 _result = count_unique_words3("book.txt")

if __name__ == "__main__":

 main()

Result of the profiling run for the above code example. You can click on the image to make
it larger.

Results:

Most �me is spent in the count_unique_words2 func�on.
Most memory is used in the count_unique_words1 func�on.

Explana�on:

The count_unique_words2 func�on is the slowest because it uses a list to store
unique words and checks if a word is already in the list before adding it. Checking
whether a list contains an element might require traversing the whole list, which is
an O(n) opera�on. As the list grows in size, the lookup �me increases with the size
of the list.
The count_unique_words1 and count_unique_words3 func�ons are faster because
they use a set to store unique words. Checking whether a set contains an element
is an O(1) opera�on.
The count_unique_words1 func�on uses the most memory because it creates a list
of all words in the text file and then creates a set from that list.
The count_unique_words3 func�on uses less memory because it traverses the text
file line by line instead of reading the whole file into memory.

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/exercise1.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/exercise1.png

What we can learn from this exercise:

When processing large files, it can be good to read them line by line or in batches
instead of reading the whole file into memory.
It is good to get an overview over standard data structures and their advantages
and disadvantages (e.g. adding an element to a list is fast but checking whether it
already contains the element can be slow).

Additional resources

Python performance workshop (by ENCCS)

Productivity tools

 Objec�ves

Know about tools that can help you spot code problems and help you following a
consistent code style without you having to do it manually.
Get an overview of AI-based tools and how they can help you wri�ng code.

Instructor note

Demo/discussion: 20 min

Linters and formatters

Linter: Tool that analyzes source code to detect poten�al errors, unused imports, unused
variables, code style viola�ons, and to improve readability.

Popular linters:
Autoflake
Flake8
Pyflakes
Pycodestyle
Pylint
Ruff

Forma�er: Tool that automa�cally formats your code to a consistent style, for instance
following PEP 8.

Popular forma�ers:
Black
YAPF
Ruff

https://enccs.github.io/python-perf/profile/
https://pypi.org/project/autoflake/
https://flake8.pycqa.org/
https://pypi.org/project/pyflakes/
https://pycodestyle.pycqa.org/
https://pylint.readthedocs.io/
https://docs.astral.sh/ruff/
https://peps.python.org/pep-0008/
https://black.readthedocs.io/
https://github.com/google/yapf
https://docs.astral.sh/ruff/

In this course we will focus on Ruff since it can do both checking and forma�ng and you
don’t have to switch between mul�ple tools.

💬 Linters and forma�ers can be configured to your liking

These tools typically have good defaults. But if you don’t like the defaults, you can
configure what they should ignore or how they should format or not format.

Examples

This code example (which we possibly recognize from the previous sec�on about Profiling
and Tracing) has few problems (highlighted):

Please try whether you can locate these problems using Ruff:

Next, let us try to auto-format a code example which is badly forma�ed and also difficult to
read:

import re

import requests

def count_unique_words(file_path: str) -> int:

 unique_words = set()

 forgotten_variable = 13

 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:

 words = re.findall(r"\b\w+\b", line.lower()))

 for word in words:

 unique_words.add(word)

 return len(unique_words)

$ ruff check

Badly forma�ed Auto-forma�ed

import re

def count_unique_words (file_path : str)->int:

 unique_words=set()

 with open(file_path,"r",encoding="utf-8") as file:
 for line in file:

 words=re.findall(r"\b\w+\b",line.lower())

 for word in words:

 unique_words.add(word)

 return len(unique_words)

https://docs.astral.sh/ruff/
https://docs.python.org/3/c-api/init.html#profiling
https://docs.python.org/3/c-api/init.html#profiling

Type checking

A (sta�c) type checker is a tool that checks whether the types of variables in your code
match the types that you have specified.

Tools:
Mypy
Pyright (Microso�)
Pyre (Meta)

Integration with editors

Many/most of the above tools can be integrated with your editor. For instance, you can
configure your editor to automa�cally format your code when you save the file. However,
this only makes sense when all team members agree to follow the same style, otherwise
saving and possibly commi�ng changes to version control will show up changes to code
wri�en by others which you possibly didn’t intend to make.

Integration with Jupyter notebooks

It is possible to automa�cally format your code in Jupyter notebooks! For this to work you
need the following three dependencies installed:

jupyterlab-code-formatter

black

isort

More informa�on and a screen-cast of how this works can be found at h�ps://jupyterlab-
code-forma�er.readthedocs.io/.

Integration with version control

If you use version control and like to have your code checked or forma�ed before you
commit the change, you can use tools like pre-commit.

AI-assisted coding

We can use AI as an assistant/appren�ce:

Code comple�on
Write a test based on an implementa�on
Write an implementa�on based on a test

https://mypy.readthedocs.io/
https://github.com/microsoft/pyright
https://pyre-check.org/
https://jupyterlab-code-formatter.readthedocs.io/
https://jupyterlab-code-formatter.readthedocs.io/
https://pre-commit.com/

Or we can use AI as a mentor:

Explain a concept
Improve code
Show a different (possibly be�er) way of implemen�ng the same thing

Example for using a chat-based AI tool.

Example for using AI to complete code in an editor.

 AI tools open up a box of ques�ons

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/chatgpt.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/chatgpt.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/code-completion.gif
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/code-completion.gif

Legal
Ethical
Privacy
Lock-in/ monopolies
Lack of diversity
Will we s�ll need to learn programming?
How will it affect learning and teaching programming?

SciPy

❓ Ques�ons

When you need more advanced mathema�cal func�ons, where do you look?

 Objec�ves

Understand that SciPy exists and what kinds of things it has.
Understand the importance of using external libraries and how to use them.
Understand the purpose of wrapping exis�ng C/Fortran code.
Non-objec�ve: know details of everything (or anything) in SciPy.

➡ See also

Main ar�cle: SciPy documenta�on

SciPy is a library that builds on top of NumPy. It contains a lot of interfaces to ba�le-tested
numerical rou�nes wri�en in Fortran or C, as well as python implementa�ons of many
common algorithms.

What’s in SciPy?

Briefly, it contains func�onality for

Special func�ons (Bessel, Gamma, etc.)
Numerical integra�on
Op�miza�on
Interpola�on
Fast Fourier Transform (FFT)
Signal processing
Linear algebra (more complete than in NumPy)
Sparse matrices
Sta�s�cs
More I/O rou�ne, e.g. Matrix Market format for sparse matrices, MATLAB files (.mat), etc.

https://docs.scipy.org/doc/scipy/reference/

Many (most?) of these are not wri�en specifically for SciPy, but use the best available open
source C or Fortran libraries. Thus, you get the best of Python and the best of compiled
languages.

Most func�ons are documented ridiculously well from a scien�fic standpoint: you aren’t just
using some unknown func�on, but have a full scien�fic descrip�on and cita�on to the
method and implementa�on.

Exercises: use SciPy

These exercises do not exist because you might need these func�ons someday. They are
because you will need to read documenta�on and understand documenta�on of an an external
library eventually.

1: Numerical integration

✍ Exercise

Do the following exercise or read the documenta�on and understand the relevant
func�ons of SciPy:

Define a func�on of one variable and using scipy.integrate.quad calculate the integral of
your func�on in the interval [0.0, 4.0] . Then vary the interval and also modify the
func�on and check whether scipy can integrate it.

✔ Solu�on

quad uses the Fortran library QUADPACK, which one can assume is pre�y good. You can
also see a whole lot of scien�fic informa�on about the func�on on the docs page -
including the scien�fic names of the methods used.

2: Sparse matrices

✍ Exercise

Do the following exercise or read the documenta�on and understand the relevant
func�ons of SciPy:

from scipy import integrate

def myfunction(x):
 # you need to define result

 return result

integral = integrate.quad(myfunction, 0.0, 4.0)

print(integral)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad

Use the SciPy sparse matrix func�onality to create a random sparse matrix with a
probability of non-zero elements of 0.05 and size 10000 x 10000. The use the SciPy
sparse linear algebra support to calculate the matrix-vector product of the sparse matrix
you just created and a random vector. Use the %�meit macro to measure how long it
takes. Does the op�onal format argument when you create the sparse matrix make a
difference?

Then, compare to how long it takes if you’d instead first convert the sparse matrix to a
normal NumPy dense array, and use the NumPy dot method to calculate the matrix-
vector product.

Can you figure out a quick rule of thumb when it’s worth using a sparse matrix
representa�on vs. a dense representa�on?

✔ Solu�on

The basic code to do the test is:

From the top of the spare matrix module documenta�on, we can see there are a variety of
different available sparse matrix types: bsr , coo , csr , csc , etc. These each represent
a different way of storing the matrices.

It seems that csr and csc are fairly fast. lil and dok are slow but it says that these
are good for crea�ng matrices with random inser�ons.

For example, csr takes 7ms, lil 42ms, dok 1600ms, and conver�ng to a non-sparse
array matrix.toarray() and mul�plying takes 64ms on one par�cular computer.

This code allows us to �me the performance at different densi�es. It seems that with the
csr format, sparse is be�er below densi�es of around .4 to .5:

..code-block:

import numpy

import scipy.sparse

vector = numpy.random.random(10000)

matrix = scipy.sparse.rand(10000, 10000, density=.05, format='csc')

We time this line

matrix.dot(vector)

https://docs.scipy.org/doc/scipy/reference/sparse.html

See also

SciPy general introduc�on
SciPy documenta�on

 Keypoints

When you need advance math or scien�fic func�ons, let’s just admit it: you do a web
search first.
But when you see something in SciPy come up, you know your solu�ons are in good
hands.

Library ecosystem

❓ Ques�ons

What happens when you need some method beyond what we discuss in this course,
what is available?
How do you decide what to build on for your work?

 Objec�ves

Know of some other available packages, but don’t necessarily know how to use them.
Be able to evaluate what you should reuse and what you should develop yourself.

You can’t do everything yourself. In fact, once we heard a quote such as this:

When you are a student, you are expected to do everything yourself, and that is how you
are evaluated. When you become a researcher, you have to be able to reuse what others
have done. We don’t have much prac�ce in doing this. – A student

In this lesson, we’ll talk about the broader ecosystem in Python: all the resources you have
available to you. Perhaps we can even classify this into two types:

Well-maintained libraries that are used by many others.
A wide variety of public code that might work but isn’t necessarily well-maintained (for
example, code from ar�cles).

for density in [.01, .05, .1, .2, .3, .4, .5]:

 matrix = scipy.sparse.rand(10000, 10000, density=density, format='csr')

 time_sparse = timeit.timeit('matrix.dot(vector)', number=10, globals=globals())
 matrix2 = matrix.toarray()

 time_full = timeit.timeit('matrix2.dot(vector)', number=10, globals=globals())

 print(f"{density} {time_sparse:.3f} {time_full:.3f}")

https://docs.scipy.org/doc/scipy/tutorial/general.html
https://docs.scipy.org/doc/scipy/reference/

We’ll start with the first then go to the second.

Glossary

Library

A collec�on of code used by a program.

Package

A library that has been made easily installable and reusable. O�en published on public
repositories such as the Python Package Index

Dependency

A requirement of another program, not included in that program.

The Python/SciPy ecosystem

This sec�on is nothing more than a tour of what exists in Python. You aren’t expected to
par�cularly remember any of these right now, but searching for these repositories is a
star�ng point of a lot of future work.

The “core” packages could be considered. Many other packages build on these, and others
that try to do similar things o�en try to conform to their interfaces (especially numpy):

Python
Numpy - arrays, everything builds on this
Scipy - scien�fic func�ons (not necessarily a lot builds on this)
matplotlib - plo�ng, many other plo�ng tools build on this
pandas - data structures
IPython / Jupyter: interac�ve work

Core numerics libraries

numpy - Arrays and array math.
scipy - So�ware for math, science, and engineering.

Plotting

matplotlib - Base plo�ng package, somewhat low level but almost everything builds on it.
seaborn - Higher level plo�ng interface; sta�s�cal graphics.
Vega-Altair - Declara�ve Python plo�ng.
mayavi - 3D plo�ng
Plotly - Big graphing library.

Data analysis and other important core packages

https://pypi.python.org/
https://www.scipy.org/about/
https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/reference/
https://matplotlib.org/
https://seaborn.pydata.org/
https://altair-viz.github.io/
https://docs.enthought.com/mayavi/mayavi/
https://plotly.com/python/

pandas - Columnar data analysi.
polars <h�ps://pola.rs/> - Alterna�ve to pandas that uses similar API, but is re-imagined for
more speed.
Vaex - Alterna�ve for pandas that uses similar API for lazy-loading and processing huge
DataFrames.
Dask - Alterna�ve to Pandas that uses similar API and can do analysis in parallel.
xarrray - Framework for working with mutli-dimensional arrays.
statsmodels - Sta�s�cal models and tests.
SymPy - Symbolic math.
networkx - Graph and network analysis.
graph-tool - Graph and network analysis toolkit implemented in C++.

Interactive computing and human interface

Interac�ve compu�ng
IPython - Nicer interac�ve interpreter
Jupyter - Web-based interface to IPython and other languages (includes projects such
as jupyter notebook, lab, hub, …)

Tes�ng
pytest - Automated tes�ng interface

Documenta�on
Sphinx - Documenta�on generator (also used for this lesson…)

Development environments
Spyder - Interac�ve Python development environment.
Visual Studio Code - Microso�’s flagship code editor.
PyCharm - JetBrains’s Python IDE.

Binder - load any git repository in Jupyter automa�cally, good for reproducible research

Data format support and data ingestion

pillow - Image manipula�on. The original PIL is no longer maintained, the new “Pillow” is a
drop-in replacement.
h5py and PyTables - Interfaces to the HDF5 file format.

Speeding up code and parallelism

MPI for Python (mpi4py) - Message Passing Interface (MPI) in Python for parallelizing
jobs.
cython - easily make C extensions for Python, also interface to C libraries
numba - just in �me compiling of func�ons for speed-up
PyPy - Python wri�en in Python so that it can internally op�mize more.
Dask - Distributed array data structure for distributed computa�on
Joblib - Easy embarrassingly parallel compu�ng
IPyParallel - Easy parallel task engine.
numexpr - Fast evalua�on of array expressions by automa�cally compiling the arithme�c.

https://pandas.pydata.org/docs/user_guide/
https://vaex.io/docs/index.html
https://www.dask.org/
https://docs.xarray.dev/en/stable/
https://www.statsmodels.org/stable/
https://www.sympy.org/
https://networkx.org/
https://graph-tool.skewed.de/
https://ipython.org/
https://jupyter.org/
https://docs.pytest.org/
https://www.sphinx-doc.org/
https://www.spyder-ide.org/
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://mybinder.org/
https://python-pillow.org/
https://www.h5py.org/
https://www.pytables.org/
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://mpi4py.readthedocs.io/en/stable/
https://cython.org/
https://numba.pydata.org/
https://www.pypy.org/
https://www.dask.org/
https://joblib.readthedocs.io/
https://ipyparallel.readthedocs.io/
https://numexpr.readthedocs.io/

Machine learning

nltk - Natural language processing toolkit.
scikit-learn - Tradi�onal machine learning toolkit.
xgboost - Toolkit for gradient boos�ng algorithms.

Deep learning

tensorflow - Deep learning library by Google.
pytorch - Currently the most popular deep learning library.
keras - Simple libary for doing deep learning.
huggingface - Ecosystem for sharing and running deep learning models and datasets.
Incluses packages like transformers , datasets , accelerate , etc.
jax - Google’s Python library for running NumPy and automa�c differen�a�on on GPUs.
flax - Neural network framework built on Jax.
equinox - Another neural network framework built on Jax.
DeepSpeed - Algorithms for running massive scale trainings. Included in many of the
frameworks.
PyTorch Lightning - Framework for crea�ng and training PyTorch models.
Tensorboard <h�ps://www.tensorflow.org/tensorboard/> - Tool for visualizing model training
on a web page.

Other packages for special cases

dateu�l and pytz - Date arithme�c and handling, �mezone database and conversion.

Connecting Python to other languages

As we discussed with Scipy, very many of the above packages aren’t wri�en in Python: they
are wri�en in some other language and have a Python interface. Python is wri�en in C, and
thus has great C interfaces. This contributes to two things:

Extending Python by wri�ng your own modules in C.
It’s actually common to first have (or write) an analysis package in C or C++, then make
the Python interface. Then it can be supported by other languages, too.
Or one starts an analysis package in Python, and slowly moves bits of it to C over �me
as there is need.

Embedding Python, where you have another primary applica�on that uses Python under
the hood as an internal scrip�ng language.

These features aren’t exactly unique to Python, but Python does support them very well.
Read more: Extending and embedding Python.

Tools for interfacing with other languages

These days, one rarely directly extends the Python interpreter, but uses

https://www.nltk.org/
https://scikit-learn.org/
https://xgboost.readthedocs.io/en/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://huggingface.co/
https://jax.readthedocs.io/en/latest/index.html
https://flax.readthedocs.io/en/latest/
https://docs.kidger.site/equinox/
https://www.deepspeed.ai/
https://lightning.ai/docs/pytorch/stable/
https://dateutil.readthedocs.io/
https://pythonhosted.org/pytz/
https://docs.python.org/extending/index.html

cffi and ctypes - interface to C and compa�ble libraries
cython - easily make C extensions for Python, also interface to C libraries
f2py - interface to Fortran code
swig - connect to a variety of programming languages.
Boost.python - Another Python/C++ interface

TODO: Julia modules for Python?

Evaluating Python packages for reuse

Above, we talked about well-maintained mainstream packages. Do you trust random code
you find online (for example included in a paper)?

Especially consider scien�fic results, which have to be correct. S�ll, you also can’t build
everything yourself, so you have to carefully evaluate the situa�on.

Below are some things to consider:

Are there releases? Have they been going on for a while?
Are releases installable without copy-paste?
Are dependencies handled well?
Does the code randomly change, so that it no longer works with your code. Is this
relevant?
Is there good documenta�on, that not just tells how to use it but how it works?
Is there automated tes�ng? What’s your evalua�on of the risk of undetectable scien�fic
errors?
Is there a community, or is it one person? Is it backed by some organiza�on? Does it have
a permanent home?
Is it is a public hos�ng site (GitLab, GitHub, Bitbucket, etc) where a community could
form?
Do others post issues and make contribu�ons? Are these issues dealt with in a �mely
manner? Can you search past bug reports?
Is the so�ware citeable?

Is your work reuseable?

Every small project you do contributes a li�le bit to the Python and SciPy ecosystem. This
course has sort of started you on that path, and a CodeRefinery workshop will make sure you
have the tools to produce high-quality, reusable code.

What’s next?

The CodeRefinery workshop men�oned above will prepare you for others to reuse your
code and for you to contribute to other code.
The upcoming Dependency management lesson will teach you how to record and manage
dependencies so that anyone can seamlessly reuse your code.

https://cffi.readthedocs.io/
https://docs.python.org/3/library/ctypes.html
https://cython.org/
https://numpy.org/doc/stable/f2py/
https://swig.org/
https://coderefinery.org/
https://coderefinery.org/

Exercises

✍ Libraries 1.1: Libraries in your work

What libraries do you use in your work? What have you made, which you could have
reused from some other source. What have you used from some other source that you
wished you had re-created?

Discuss in your groups or HackMD.

✔ Libraries 1.1

… is there anything to say here?

✍ Libraries 1.2: Evalua�ng packages

Below are some links to some packages, both public and made by the authors of this
lesson. Evaluate them, considering “would I use this in my project?”

a. h�ps://github.com/networkx/networkx/
b. some code on webpage in a paper’s footnote
c. h�ps://github.com/rkdarst/pcd
d. h�ps://github.com/d�libs/numgrid
e. h�ps://github.com/rkdarst/dynbench
f. h�ps://vpython.org/

✔ Libraries 1.2

a. networkx: This seems to be a rela�vely large, ac�ve project using best prac�ces.
Probably usable.

b. I would probably use it if I had to, but would prefer not to.
c. This (wri�en by one of the authors of this lesson) has no documen�ng, no community,

no best prac�ces, and is very old. Probably not a good idea to try to use it
d. This project uses best prac�ces, but doesn’t seem to have a big community. It’s

probably fine to use, but who knows if it will be maintained 10 years from now. It
does have automated tests via Github Ac�ons (.github/workflows and the green
checks), so the authors have put some work into making it correct.

e. This (also wri�en by one of the authors) looks like it was made for a paper of some
sort. It has some minimal documenta�on, but s�ll is missing many best prac�ces and is
clearly not maintained anymore (look at the ancient pull request). Probably not a good
idea to use unless you have to.

f. This project has a pre�y website, and some informa�on. But seems to not be using
best prac�ces of an open repository, and custom loca�ons which could disappear at
any �me.

https://github.com/networkx/networkx/
https://github.com/rkdarst/pcd
https://github.com/dftlibs/numgrid
https://github.com/rkdarst/dynbench
https://vpython.org/

You no�ce that several of the older projects here were wri�en by one of the authors of
this lesson. It goes to show that everyone starts somewhere and improves over �me -
don’t feel bad if your work isn’t perfect, as long as you keep trying to get be�er!

See also

Topical So�ware in the SciPy ecosystem - rela�vely detailed (but not comprehensive) list
of projects

 Keypoints

Almost everything you need can already be found, except your incremental work.
When do you build on that other work, and when do you create things yourself?

Dependency management

❓ Ques�ons

Do you expect your code to work in one year? Five? What if it uses numpy or
tensorflow or random-github-package ?

How can my collaborators easily install my code with all the necessary dependencies?
How can I make it easy for my others (and me in future) to reproduce my results?
How can I work on two (or more) projects with different and conflic�ng
dependencies?

 Objec�ves

Learn how to record dependencies
Be able to communicate the dependencies as part of a report/thesis/publica�on
Learn how to use isolated environments for different projects
Simplify the use and reuse of scripts and projects

How do you track dependencies of your project?

Dependency: Reliance on a external component. In this case, a separately installed
so�ware package such as numpy .

Exercise 1

✍ Dependencies-1: Discuss dependency management (5 min)

Please discuss and answer via collabora�ve document the following ques�ons:

How do you install Python packages (libraries) that you use in your work? From PyPI
using pip? From other places using pip? Using conda?

https://new.scipy.org/topical-software.html

How do you track/record the dependencies? Do you write them into a file or
README? Into requirements.txt or environment.yml ?
If you track dependencies in a file, why do you do this?
Have you ever experienced that a project needed a different version of a Python
library than the one on your computer? If yes, how did you solve it?

PyPI (The Python Package Index) and conda ecosystem

PyPI (The Python Package Index) and conda are popular packaging/dependency management
tools:

When you run pip install you typically install from PyPI, but you can also pip install
from a GitHub repository and similar.
When you run conda install you typically install from Anaconda Cloud where there are
conda channels maintained by Anaconda Inc. and by various communi�es.

Why are there two ecosystems?

 PyPI

Installa�on tool: pip
Summary: PyPI is tradi�onally used for Python-only packages or for Python interfaces
to external libraries. There are also packages that have bundled external libraries (such
as numpy).
Amount of packages: Huge number. Old versions are supported for a long �me.
How libraries are handled: If your code depends on external libraries or tools, these
things need to be either included in the pip-package or provided via some other
installa�on system (like opera�ng system installer or manual installa�on).
Pros:

Easy to use
Package crea�on is easy

Cons:

Installing packages that need external libraries can be complicated

 Conda

Installa�on tool: conda or mamba
Summary: Conda aims to be a more general package distribu�on tool and it tries to
provide not only the Python packages, but also libraries and tools needed by the
Python packages. Most scien�fic so�ware wri�en in Python uses external libraries to
speed up calcula�ons and installing these libraries can o�en become complicated
without conda.

https://pypi.org/
https://anaconda.org/

Amount of packages: Curated list of packages in defaults-channel, huge number in
community managed channels. Other packages can be installed via pip.
How libraries are handled: Required libraries are installed as separate conda packages.
Pros:

Quite easy to use
Easier to manage packages that need external libraries

Cons:

Package crea�on is harder

Conda ecosystem explained

Warning

Anaconda has recently changed its licensing terms, which affects its use in a professional
se�ng. This caused uproar among academia and Anaconda modified their posi�on in this
ar�cle.

Main points of the ar�cle are:

conda (installa�on tool) and community channels (e.g. conda-forge) are free to use.
Anaconda repository and Anaconda’s channels in the community repository are free
for universi�es and companies with fewer than 200 employees. Non-university
research ins�tu�ons and na�onal laboratories need licenses.
Miniconda is free, when it does not download Anaconda’s packages.
Miniforge is not related to Anaconda, so it is free.

For ease of use on sharing environment files, we recommend using Miniforge to create
the environments and using conda-forge as the main channel that provides so�ware.

Package repositories:
Anaconda Community Repository (anaconda.org) aka. Anaconda Cloud is a package
cloud maintained by Anaconda Inc. It is a repository that houses mirrors of Anaconda’s
channels and community maintained channels.
Anaconda Repository (repo.anaconda.com) houses Anaconda’s own proprietary
so�ware channels.

Major package channels:
Anaconda’s proprietary channels: main , r , msys2 and anaconda . These are
some�mes called defaults .
conda-forge is the largest open source community channel. It has over 27,000
packages that include open-source versions of packages in Anaconda’s channels.

Package distribu�ons and installers:
Anaconda is a distribu�on of conda packages made by Anaconda Inc.. When using
Anaconda remember to check that your situa�on abides with their licensing terms.

https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://anaconda.org/
https://repo.anaconda.com/
https://conda-forge.org/
https://www.anaconda.com/

Miniconda is a minimal installer maintained by Anaconda Inc. that has conda and uses
Anaconda’s channels by default. Check licensing terms when using these packages.
Miniforge is an open-source Miniconda replacement that uses conda-forge as the
default channel. Contains mamba as well.
micromamba is a �ny stand-alone version of the mamba package manager wri�en in
C++. It can be used to create and manage environments without installing base-
environment and Python. It is very useful if you want to automate environment
crea�on or want a more lightweight tool.

Package managers:
conda is a package and environment management system used by Anaconda. It is an
open source project maintained by Anaconda Inc..
mamba is a drop in replacement for conda. It used be much faster than conda due to
be�er dependency solver but nowadays conda also uses the same solver. It s�ll has
some UI improvements.

Exercise 2

✍ Dependencies-2: Package language detec�ve (5 min)

Think about the following sentences:

1. Yes, you can install my package with pip from GitHub.
2. I forgot to specify my channels, so my packages came from the defaults.
3. I have a Miniforge installa�on and I use mamba to create my environments.

What hidden informa�on is given in these sentences?

✔ Solu�on

1. The package is provided as a pip package. However, it is most likely not uploaded
to PyPI as it needs to be installed from a repository.

2. In this case the person saying the sentence is most likely using Anaconda or
Miniconda because these tools use the defaults -channel as the default channel.
They probably meant to install so�ware from conda-forge, but forgot to specify
the channel.

3. Miniforge uses conda-forge as the default channel. So unless some other channel
has been specified, packages installed with these tools come from conda-forge as
well.

Python environments

An environment is a basically a folder that contains a Python interpreter and other Python
packages in a folder structure similar to the opera�ng system’s folder structure.

https://conda.io/miniconda.html
https://github.com/conda-forge/miniforge
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://conda.io/
https://mamba.readthedocs.io/en/latest/index.html
https://conda.org/blog/2023-11-06-conda-23-10-0-release/

These environments can be created by the venv-module in base Python, by a pip package
called virtualenv or by conda/mamba.

Using these environments is highly recommended because they solve the following problems:

Installing environments won’t modify system packages.
You can install specific versions of packages into them.
You can create an environment for each project and you won’t encounter any problems if
different projects require different versions of packages.
If you make some mistake and install something you did not want or need, you can
remove the environment and create a new one.
Others can replicate your environment by reusing the same specifica�on that you used to
create the environment.

Creating Python environments

Crea�ng conda environment from environment.yml

Crea�ng virtual environment from requirements.txt

Record channels and packages you need to a file called environment.yml :

The name describes the name of the environment, channels -list tells which channels
should be search for packages (channel priority goes from top to bo�om) and
dependencies -list contains all packages that are needed.

Using this file you can now create an environment with:

 You can also use mamba

If you have mamba installed, you can replace conda with mamba in each command.

name: my-environment

channels:

 - conda-forge
dependencies:

 - python

 - numpy

 - matplotlib

 - pandas

$ conda env create --file environment.yml

https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/en/latest/

 Crea�ng environments without environment.yml/requirements.txt

It is possible to create environments with manual commands, but this is highly
discouraged for con�nuous use.

Firstly, replica�ng the environment becomes much harder.

Secondly, running package installa�on commands manually in an environment can result
in unexpected behaviour such as:

Package manager might remove an already installed packages or update them.
Package manager might not find a package that works with already installed packages.

You can then ac�vate the environment with:

 conda ac�vate versus source ac�vate

conda activate will only work if you have run conda init in the past. Running
conda init will make loading environments easier as you will always have a conda

environment loaded.

However, this can also cause problems as programs in the main environment will be
constantly loaded and they might be used even when they’re not supposed to be
used. A common example is not having pip installed in a conda environment which
results pip from main environment to be used instead.

You can then check e.g. installed versions of Python and numpy :

To deac�vate the environment, you can run:

$ conda activate my-environment

$ python -c 'import sys; import numpy; print(f"Python version:

{sys.version}\nNumPy version: {numpy.__version__}")'
Python version: 3.13.0 | packaged by conda-forge | (main, Oct 8 2024, 20:04:32)

[GCC 13.3.0]

NumPy version: 2.1.2

$ conda deactivate

The reason for this behavior is that package managers does not know what commands
you ran in the past. It only knows the state of your environment and what you’re
currently telling it to install.

These kinds of problems can be mi�gated by recording dependencies in an
environment.yml or requirements.txt and using the relevant package manager to update

/ recreate the environment.

Exercise 3

✍ Dependencies-3: Create a Python environment (15 min)

Use conda or venv to create the environment presented in the example.

Adding more packages to existing environments

Quite o�en when you’re crea�ng a new environment you might forget to add all relevant
packages to environment.yml or requirements.txt .

In these cases the best prac�ce is to add missing packages to environment.yml or
requirements.txt and to update the environment.

Some�mes the new packages are incompa�ble with the ones already in the environment.
Maybe they have different dependencies that are not sa�sfied with the current versions,
maybe the package you’re installing is incompa�ble with the ones installed. In these cases the
safest approach is to re-create the environment. This will let the dependency solvers to start
from clean slate and with a full picture of what packages need to be installed.

Adding new packages to a conda environment

Adding new packages to a virtual environment

Add new packages that you want to install to dependencies in environment.yml .

A�erwards, run

to update the environment.

$ conda env update --file environment.yml

Pinning package versions

Some�mes your code will only work with a certain range of dependencies. Maybe you use a
func�on or a class that was introduced in a later version or a newer version has modified its
API.

In these situa�ons, you’ll want to pin the package versions.

For example, there is usually a delay between doing research and that research being
published. During this �me packages used in the research might update and reviewers or
interested researchers might not be able to replicate your results or run your code if new
versions are not compa�ble.

For more informa�on on all possible specifica�ons, see this page from Python’s packaging
guide.

See also: h�ps://coderefinery.github.io/reproducible-research/dependencies/

 To pin or not to pin? That is the ques�on.

Pinning versions means that you pin the environment to that instance in �me when these
specific versions of the dependencies were being used.

This can be good for single-use applica�ons, like replica�ng a research paper, but it is
usually bad for the long-term maintainability of the so�ware.

environment.yml with pinned versions requirements.txt with pinned versions

When pinning versions in environment.yml one can use a variety of comparison
operators:

name: my-environment

channels:

 - conda-forge
dependencies:

 # Use python 3.11

 - python=3.11

 # numpy that is bigger or equal than version 1, but less than version 2

 - numpy>=1,<2
 # matplotlib greater than 3.8.2

 - matplotlib>3.8.2

 # pandas that is compatible with 2.1

 - pandas~=2.1

https://packaging.python.org/en/latest/specifications/version-specifiers/
https://coderefinery.github.io/reproducible-research/dependencies/

Pinning to major versions or to compa�ble versions is usually the best prac�ce as that
allows your so�ware to co-exist with other packages even when they are updated.

Remember that at some point in �me you will face a situa�on where newer versions of
the dependencies are no longer compa�ble with your so�ware. At this point you’ll have
to update your so�ware to use the newer versions or to lock it into a place in �me.

Exporting package versions from an existing environment

Some�mes you want to create a file that contains the exact versions of packages in the
environment. This is o�en called expor�ng or freezing and environment.

Doing this will create a file that does describe the installed packages, but it won’t tell which
packages are the most important ones and which ones are just dependencies for those
packages.

Using manually created environment.yml or requirements.txt are in most cases be�er than
automa�cally created ones because they shows which packages are the important packages
needed by the so�ware.

Expor�ng environment.yml from a conda environment

Expor�ng requirements.txt from a virtual environment

Once you have ac�vated the environment, you can run

If package build versions are not relevant for the use case, one can also run

which leaves out the package build versions.

Alterna�vely one can also run

$ conda env export > environment.yml

$ conda env export --no-builds > environment.yml

$ conda env export --from-history > environment.yml

Exercise 4

✍ Dependencies-4: Export an environment (15 min)

Export the environment you previously created.

Additional tips and tricks

which creates the environment.yml -file based on what packages were asked to be
installed.

 conda-lock

For even more reproducibility, you should try out conda-lock. It turns your
environment.yml into a conda.lock that has all informa�on needed to exactly create

the same environment. You can use conda.lock -files in same way as
environment.yml when you create an environment:

$ conda env create --file conda.lock

Crea�ng a conda environment from requirements.txt

Adding pip packages into conda environments

Installing pip packages from GitHub

conda supports installing an environment from requirements.txt .

To create an environment.yml from this environment that mimics the
requirements.txt , ac�vate it and run

$ conda env create --name my-environment --channel conda-forge --file

requirements.txt

$ conda env export --from-history > environment.yml

https://github.com/conda/conda-lock

How to communicate the dependencies as part of a
report/thesis/publication

Each notebook or script or project which depends on libraries should come with either a
requirements.txt or a environment.yml , unless you are crea�ng and distribu�ng this project

as Python package (see next sec�on).

A�ach a requirements.txt or a environment.yml to your thesis.
Even be�er: put requirements.txt or a environment.yml in your Git repository along
your code.
Even be�er: also binderize your analysis pipeline (more about that in a later session).

Version pinning for package creators

We will talk about packaging in a different session but when you create a library and package
projects, you express dependencies either in pyproject.toml (or setup.py) (PyPI) or
meta.yaml (conda).

These dependencies will then be used by either other libraries (who in turn write their own
setup.py or pyproject.toml or meta.yaml) or by people directly (filling out
requirements.txt or a environment.yml).

Now as a library creator you have a difficult choice. You can either pin versions very narrowly
like here (example taken from setup.py):

or you can define a range or keep them undefined like here (example taken from setup.py):

...

install_requires=[

 'numpy==1.19.2',
 'matplotlib==3.3.2'

 'pandas==1.1.2'

 'scipy==1.5.2'

]

...

...

install_requires=[

 'numpy',

 'matplotlib'

 'pandas'
 'scipy'

]

...

Should we pin the versions here or not?

Pinning versions here would be good for reproducibility.
However pinning versions may make it difficult for this library to be used in a project
alongside other libraries with conflic�ng version dependencies.
Therefore as library creator make the version requirements as wide as possible.

Set minimum version when you know of a reason: >=2.1
Some�mes set maximum version to next major version (<4) (when you currently use
3.x.y) when you expect issues with next major version.

As the “end consumer” of libraries, define your dependencies as narrowly as possible.

See also

Other tools for dependency management:

Poetry: dependency management and packaging
Pipenv: dependency management, alterna�ve to Poetry
pyenv: if you need different Python versions for different projects
micropipenv: lightweight tool to “rule them all”
mamba: a drop in replacement for conda that does installa�ons faster.
miniforge: Miniconda alterna�ve with conda-forge as the default channel and op�onally
mamba as the default installer.
micromamba: �ny version of Mamba as a sta�c C++ executable. Does not need base
environment or Python for installing an environment.
pixi: a package management tool which builds upon the founda�on of the conda
ecosystem.

Other resources:

h�ps://scicomp.aalto.fi/scicomp/packaging-so�ware/

 Keypoints

If somebody asks you what dependencies your code has, you should be able to answer
this ques�on with a file.
Install dependencies by first recording them in requirements.txt or environment.yml
and install using these files, then you have a trace.
Use isolated environments and avoid installing packages system-wide.

Binder

❓ Ques�ons

Why sharing code alone may not be sufficient.
How to share a computa�onal environment?
What is Binder?

https://python-poetry.org/
https://pipenv.pypa.io/
https://github.com/pyenv/pyenv
https://github.com/thoth-station/micropipenv
https://mamba.readthedocs.io/en/latest/index.html
https://github.com/conda-forge/miniforge
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://pixi.sh/
https://scicomp.aalto.fi/scicomp/packaging-software/

How to binderize my Python repository?
How to publish my Python repository?

 Objec�ves

Learn about reproducible computa�onal environments.
Learn to create and share custom compu�ng environments with Binder.
Learn to get a DOI from Zenodo for a repository.

Why is it sometimes not enough to share your code?

Exercise 1

✍ Binder-1: Discuss be�er strategies than only code sharing (10 min)

Lea is a PhD student in computa�onal biology and a�er 2 years of intensive work, she is
finally ready to publish her first paper. The code she has used for analyzing her data is
available on GitHub but her supervisor who is an advocate of open science told her that
sharing code is not sufficient.

Why is it possibly not enough to share “just” your code? What problems can you
an�cipate 2-5 years from now?

We form small groups (4-5 persons) and discuss in groups. If the workshop is online, each
group will join a breakout room. If joining a group is not possible or prac�cal, we use the
shared document to discuss this collabora�vely.

Each group write a summary (bullet points) of the discussion in the workshop shared
document (the link will be provided by your instructors).

Sharing a computing environment with Binder

Binder allows you to create custom compu�ng environments that can be shared and used by
many remote users. It uses repo2docker to create a container image (docker image) of a
project using informa�on contained in included configura�on files.

Repo2docker is a standalone package that you can install locally on your laptop but an online
Binder service is freely available. This is what we will be using in the tutorial.

The main objec�ve of this exercise is to learn to fork a repository and add a requirement file
to share the computa�onal environment with Binder.

https://mybinder.readthedocs.io/en/latest/
https://repo2docker.readthedocs.io/en/latest/
https://www.docker.com/
https://mybinder.org/
https://mybinder.org/

Credit: Julie�e Taka, Logilab and the OpenDreamKit project (2017)

Binder exercise/demo

In an earlier episode (Data visualiza�on with Matplotlib) we have created this notebook:

We will now first share it via GitHub “sta�cally”, then using Binder.

✍ Binder-2: Exercise/demo: Make your notebooks reproducible by anyone (15 min)

import pandas as pd
import matplotlib.pyplot as plt

url =

"https://raw.githubusercontent.com/plotly/datasets/master/gapminder_with_codes.csv"

data = pd.read_csv(url)
data_2007 = data[data["year"] == 2007]

fig, ax = plt.subplots()

ax.scatter(x=data_2007["gdpPercap"], y=data_2007["lifeExp"], alpha=0.5)

ax.set_xscale("log")

ax.set_xlabel("GDP (USD) per capita")

ax.set_ylabel("life expectancy (years)")

https://opendreamkit.org/2017/11/02/use-case-publishing-reproducible-notebooks/
https://github.com/
https://mybinder.org/

Instructor demonstrates this. This exercise (and all following) requires git/GitHub
knowledge and accounts, which wasn’t a prerequisite of this course. Thus, this is a
demo (and might even be too fast for you to type-along). Watch the video if you are
reading this later on:

Creates a GitHub repository
Uploads the notebook file
Then we look at the sta�cally rendered version of the notebook on GitHub
Create a requirements.txt file which contains:

Commit and push also this file to your notebook repository.
Visit h�ps://mybinder.org and copy paste the code under “Copy the text below …” into
your README.md:

Check that your notebook repository now has a “launch binder” badge in your
README.md file on GitHub.
Try clicking the bu�on and see how your repository is launched on Binder (can take a
minute or two). Your notebooks can now be explored and executed in the cloud.
Enjoy being fully reproducible!

How can I get a DOI from Zenodo?

Zenodo is a general purpose open-access repository built and operated by CERN and
OpenAIRE that allows researchers to archive and get a Digital Object Iden�fier (DOI) to data
that they share.

pandas==1.2.3

matplotlib==3.4.2

https://mybinder.org/
https://about.zenodo.org/
https://home.cern/
https://www.openaire.eu/
https://www.doi.org/

✍ Binder-3: Link a Github repository with Zenodo (op�onal)

Everything you deposit on Zenodo is meant to be kept (long-term archive). Therefore
we recommend to prac�ce with the Zenodo “sandbox” (prac�ce/test area) instead:
h�ps://sandbox.zenodo.org

1. Link GitHub with Zenodo:

Go to h�ps://sandbox.zenodo.org (or to h�ps://zenodo.org for the real upload later,
a�er prac�cing).
Log in to Zenodo with your GitHub account. Be aware that you may need to
authorize Zenodo applica�on (Zenodo will redirect you back to GitHub for
Authoriza�on).
Choose the repository webhooks op�ons.
From the drop-down menu next to your email address at the top of the page,
select GitHub.
You will be presented with a list of all your Github repositories.

2. Archiving a repo:

Select a repository you want to archive on Zenodo.
Toggle the “on” bu�on next to the repository ou need to archive.
Click on the Repo that you want to reserve.
Click on Create release bu�on at the top of the page. Zenodo will redirect you
back to GitHub’s repo page to generate a release.

3. Trigger Zenodo to Archive your repository

Go to GitHub and create a release. Zenodo will automa�cally download a .zip-ball
of each new release and register a DOI.
If this is the first release of your code then you should give it a version number of
v1.0.0. Add descrip�on for your release then click the Publish release bu�on.
Zenodo takes an archive of your GitHub repository each �me you create a new
Release.

4. To ensure that everything is working:

https://sandbox.zenodo.org/
https://sandbox.zenodo.org/
https://zenodo.org/

Go to h�ps://zenodo.org/account/se�ngs/github/ (or the corresponding sandbox
at h�ps://sandbox.zenodo.org/account/se�ngs/github/), or the Upload page
(h�ps://zenodo.org/deposit), you will find your repo is listed.
Click on the repo, Zenodo will redirect you to a page that contains a DOI for your
repo will the informa�on that you added to the repo.
You can edit the archive on Zenodo and/or publish a new version of your so�ware.
It is recommended that you add a descrip�on for your repo and fill in other
metadata in the edit page. Instead of edi�ng metadata manually, you can also add a
.zenodo.json or a CITATION.cff file to your repo and Zenodo will infer the

metadata from this file.
Your code is now published on a Github public repository and archived on Zenodo.
Update the README file in your repository with the newly created zenodo badge.

Create a Binder link for your Zenodo DOI

Rather than specifying a GitHub repository when launching binder, you can instead use a
Zenodo DOI.

✍ Binder-4: Link Binder with Zenodo (10 min)

We will be using an exis�ng Zenodo DOI 10.5281/zenodo.3886864 to start Binder:

Go to h�ps://mybinder.org and fill informa�on using Zenodo DOI (as shown on the
anima�on below):

You can also get a Binder badge and update the README file in the repository. It is
good prac�ce to add both the Zenodo badge and the corresponding Binder badge.

 Keypoints

It is easy to sharing reproducible computa�onal environments

https://zenodo.org/account/settings/github/
https://sandbox.zenodo.org/account/settings/github/
https://zenodo.org/deposit
https://doi.org/10.5281/zenodo.3247652
https://mybinder.org/

Binder provides a way for anyone to test and run code - without you needing to set up
a dedicated server for it.
Zenodo provides permanent archives and a DOI.

Parallel programming

❓ Ques�ons

When you need more than one processor, what do you do?
How can we use more than one processor/core in Python?

 Objec�ves

Understand the major strategies of parallelizing code
Understand mechanics of the multiprocessing package
Know when to use more advanced packages or approaches

Modes of parallelism

You realize you do have more computa�on to do than you can on one processor? What do
you do?

1. Profile your code, iden�fy the actual slow spots.
2. Can you improve your code in those areas? Use an exis�ng library?
3. Are there are any low-effort op�miza�ons that you can make?
4. Consider using numba or cython to accelerate key func�ons.
5. Think about parallelizing.

Many �mes in science, you want to parallelize your code: either if the computa�on takes too
much �me on one core or when the code needs to be parallel to even be allowed to run on a
specific hardware (e.g. supercomputers).

Parallel compu�ng is when many different tasks are carried out simultaneously. There are
three main models:

Embarrassingly parallel: the code does not need to synchronize/communicate with other
instances, and you can run mul�ple instances of the code separately, and combine the
results later. If you can do this, great! (array jobs, task queues, workflow management
tools)
Mul�threading: Parallel threads need to communicate and do so via the same memory
(variables, state, etc). (OpenMP, threading)
Mul�processing, message passing: Different processes manage their own memory
segments. They share data by communica�ng (passing messages) as needed.
(multiprocessing , MPI).

https://numba.pydata.org/
https://cython.org/

Warning

Parallel programming is not magic, but many things can go wrong and you can get
unexpected results or difficult to debug problems. Parallel programming is a fascina�ng
world to get involved in, but make sure you invest enough �me to do it well.

See the video by Raymond He�nger (“See Also” at bo�om of page) for an entertaining
take on this.

Multithreading and the GIL

The designers of the Python language made the choice that only one thread in a process can
run actual Python code by using the so-called global interpreter lock (GIL). This means that
approaches that may work in other languages (C, C++, Fortran), may not work in Python. At
first glance, this is bad for parallelism. But it’s not all bad!:

External libraries (NumPy, SciPy, Pandas, etc), wri�en in C or other languages, can release
the lock and run mul�-threaded.
Most input/output releases the GIL, and input/output is slow. The threading library can
be used to mul�thread I/O.
Python libraries like multiprocessing and mpi4py run mul�ple Python processes and this
circumvents the GIL.

Consider the following code which does a symmetrical matrix inversion of a fairly large
matrix:

If we run this in a Jupyter notebook or through a Python script, it will automa�cally use
mul�threading through OpenMP. We can force NumPy to use only one thread by se�ng an
environment variable (either export OMP_NUM_THREADS=1 or export MKL_NUM_THREADS=1 ,
depending on how NumPy is compiled on your machine), and this will normally result in
significantly longer run�me.

➡ See also

More on the global interpreter lock

import numpy as np

import time

A = np.random.random((4000,4000))

A = A * A.T

time_start = time.time()

np.linalg.inv(A)

time_end = time.time()
print("time spent for inverting A is", round(time_end - time_start,2), 's')

https://wiki.python.org/moin/GlobalInterpreterLock

Threading python module. This is very low level and you shouldn’t use it unless you
really know what you are doing.
We recommend you find a UNIX threading tutorial first before embarking on using the
threading module.

multiprocessing

As opposed to threading, Python has a reasonable way of doing something similar that uses
mul�ple processes: the multiprocessing module. The interface is a lot like threading, but in
the background creates new processes to get around the global interpreter lock.

To show an example, the split-apply-combine or map-reduce paradigm is quite useful for
many scien�fic workflows. Consider you have this:

You can apply the func�on to every element in a list using the map() func�on:

The multiprocessing.pool.Pool class provides an equivalent but parallelized (via
mul�processing) way of doing this. The pool class, by default, creates one new process per
CPU and does parallel calcula�ons on the list:

Warning

Running the above example interac�vely in a Jupyter notebook or through an
Python/IPython terminal may or may not work on your computer! This is a feature and
not a bug, as covered in the documenta�on.

Fortunately, there is a fork of mul�processsing called mul�process which does work in
interac�ve environments. All we have to do is install it by pip install multiprocess and
change the import statement: from multiprocess import Pool .

def square(x):

 return x*x

>>> list(map(square, [1, 2, 3, 4, 5, 6]))
[1, 4, 9, 16, 25, 36]

>>> from multiprocessing import Pool

>>> with Pool() as pool:

... pool.map(square, [1, 2, 3, 4, 5, 6])

[1, 4, 9, 16, 25, 36]

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://doi.org/10.18637%2Fjss.v040.i01
https://en.wikipedia.org/wiki/MapReduce
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/3/library/multiprocessing.html
https://pypi.org/project/multiprocess/

Exercises, multiprocessing

✍ Parallel-1, mul�processing

Here, you find some code which calculates pi by a stochas�c algorithm. You don’t really
need to worry how the algorithm works, but it computes random points in a 1x1 square,
and computes the number that fall into a circle. Copy it into a Jupyter notebook and use
the %%timeit cell magic on the computa�on part (the one highlighted line a�er �meit
below):

Using the multiprocessing.pool.Pool code from the lesson, run the sample func�on 10
�mes, each with 10**5 samples only. Combine the results and �me the calcula�on. What
is the difference in �me taken?

NOTE: If you’re working in an interac�ve environment and this doesn’t work with the
multiprocessing module, install and use the multiprocess module instead!

(op�onal, advanced) Do the same but with multiprocessing.pool.ThreadPool instead. This
works iden�cally to Pool , but uses threads instead of different processes. Compare the
�me taken.

✔ Solu�on

See the finished notebook here Python mul�threading solu�on.

import random

def sample(n):
 """Make n trials of points in the square. Return (n, number_in_circle)

 This is our basic function. By design, it returns everything it\

 needs to compute the final answer: both n (even though it is an input

 argument) and n_inside_circle. To compute our final answer, all we
 have to do is sum up the n:s and the n_inside_circle:s and do our

 computation"""

 n_inside_circle = 0

 for i in range(n):

 x = random.random()
 y = random.random()

 if x**2 + y**2 < 1.0:

 n_inside_circle += 1

 return n, n_inside_circle

%%timeit

n, n_inside_circle = sample(10**6)

pi = 4.0 * (n_inside_circle / n)

pi

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.ThreadPool

You no�ce the version with ThreadPool is no faster, and probably takes even longer.
This is because this is a pure-Python func�on which can not run simultaneously in
mul�ple threads.

✍ (advanced) Parallel-2 Running on a cluster

How does the pool know how many CPUs to take? What happens if you run on a
computer cluster and request only part of the CPUs on a node?

✔ Solu�on

Pool by default uses one process for each CPU on the node - it doesn’t know about
your cluster’s scheduling system. It’s possible that you have permission to use 2 CPUs
but it is trying to use 12. This is generally a bad situa�on, and will just slow you down
(and make other users on the same node upset)!

You either need to be able to specify the number of CPUs to use (and pass it the right
number), or make it aware of the cluster system. For example, on a Slurm cluster you
would check the environment variable SLURM_CPUS_PER_TASK .

Whatever you do, document what your code is doing under the hood, so that other
users know what is going on (we’ve learned this from experience…).

MPI

The message passing interface (MPI) approach to paralleliza�on is that:

Tasks (cores) have a rank and are numbered 0, 1, 2, 3, …
Each task (core) manages its own memory
Tasks communicate and share data by sending messages
Many higher-level func�ons exist to distribute informa�on to other tasks and gather
informa�on from other tasks
All tasks typically run the en�re code and we have to be careful to avoid that all tasks do
the same thing

Introductory MPI lessons where Python is included:

h�ps://rantahar.github.io/introduc�on-to-mpi/
h�ps://pdc-support.github.io/introduc�on-to-mpi/

These blog posts are good for gentle MPI/mpi4py introduc�on:

h�ps://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/
h�ps://www.kth.se/blogs/pdc/2019/11/parallel-programming-in-python-mpi4py-part-2/

https://rantahar.github.io/introduction-to-mpi/
https://pdc-support.github.io/introduction-to-mpi/
https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/
https://www.kth.se/blogs/pdc/2019/11/parallel-programming-in-python-mpi4py-part-2/

Those who use MPI in C, C++, Fortran, will probably understand the steps in the following
example. For learners new to MPI, we can explore this example together.

Here we reuse the example of approxima�ng pi with a stochas�c algorithm from above, and
we have highlighted the lines which are important to get this MPI example to work:

Exercises, MPI

✍ Parallel-3, MPI

import random

import time

from mpi4py import MPI

def sample(n):

 """Make n trials of points in the square. Return (n, number_in_circle)

 This is our basic function. By design, it returns everything it\

 needs to compute the final answer: both n (even though it is an input

 argument) and n_inside_circle. To compute our final answer, all we

 have to do is sum up the n:s and the n_inside_circle:s and do our

 computation"""
 n_inside_circle = 0

 for i in range(n):

 x = random.random()

 y = random.random()

 if x ** 2 + y ** 2 < 1.0:
 n_inside_circle += 1

 return n, n_inside_circle

comm = MPI.COMM_WORLD
size = comm.Get_size()

rank = comm.Get_rank()

n = 10 ** 7

if size > 1:

 n_task = int(n / size)

else:

 n_task = n

t0 = time.perf_counter()

_, n_inside_circle = sample(n_task)

t = time.perf_counter() - t0

print(f"before gather: rank {rank}, n_inside_circle: {n_inside_circle}")

n_inside_circle = comm.gather(n_inside_circle, root=0)

print(f"after gather: rank {rank}, n_inside_circle: {n_inside_circle}")

if rank == 0:
 pi_estimate = 4.0 * sum(n_inside_circle) / n

 print(

 f"\nnumber of darts: {n}, estimate: {pi_estimate}, time spent: {t:.2} seconds"

)

We can do this as exercise or as demo. Note that this example requires mpi4py and a
MPI installa�on such as for instance OpenMPI.

Try to run this example on one core: $ python example.py .
Then compare the output with a run on mul�ple cores (in this case 2): $ mpiexec -n 2
python example.py .
Can you guess what the comm.gather func�on does by looking at the print-outs right
before and a�er.
Why do we have the if-statement if rank == 0 at the end?
Why did we use _, n_inside_circle = sample(n_task) and not n, n_inside_circle =
sample(n_task) ?

✔ Solu�on

We first run the example normally, and get:

Next we take advantage of the MPI parallelisa�on and run on 2 cores:

Note that two MPI processes are now prin�ng output. Also, the parallel version runs
twice as fast!

The comm.gather func�on collects (gathers) values of a given variable from all MPI
ranks onto one root rank, which is conven�onally rank 0.

A condi�onal if rank == 0 is typically used to print output (or write data to file, etc)
from only one rank.

An underscore _ is o�en used as a variable name in cases where the data is
unimportant and will not be reused.

$ python example.py

before gather: rank 0, n_inside_circle: 7854305

after gather: rank 0, n_inside_circle: [7854305]

number of darts: 10000000, estimate: 3.141722, time spent: 2.5 seconds

$ mpirun -n 2 python mpi_test.py

before gather: rank 0, n_inside_circle: 3926634

before gather: rank 1, n_inside_circle: 3925910
after gather: rank 1, n_inside_circle: None

after gather: rank 0, n_inside_circle: [3926634, 3925910]

number of darts: 10000000, estimate: 3.1410176, time spent: 1.3 seconds

https://www.open-mpi.org/

Coupling to other languages

As men�oned further up in “Mul�threading and the GIL”, Python has the global interpreter
lock (GIL) which prevents us from using shared-memory paralleliza�on strategies like
OpenMP “directly”.

However, an interes�ng workaround for this can be to couple Python with other languages
which do not have the GIL. This also works just as well when you don’t need parallelism, but
need to make an op�mized algorithm for a small part of the code.

Two strategies are common:

Couple Python with compiled languages like C, C++, Fortran, or Rust and let those handle
the shared-memory paralleliza�on:

C: use the cffi package (C foreign func�on interface). ctypes is a similar but
slightly more primi�ve module that is in the standard library.
C++: use pybind11
Fortran: create a C interface using iso_c_binding and then couple the C layer to
Python using cffi
Rust: use PyO3

Let compiled languages do the shared-memory paralleliza�on part (as in above point) and
let Python do the MPI work and distribute tasks across nodes using an mpi4py layer.

Coupling Python with other languages using the above tools is not difficult but it goes
beyond the scope of this course.

Before you take this route, profile the applica�on first to be sure where the bo�leneck is.

Of course some�mes coupling languages is not about overcoming bo�lenecks but about
combining exis�ng programs which have been wri�en in different languages for whatever
reason.

Dask and task queues

There are other strategies that go completely beyond the manual paralleliza�on methods
above. We won’t go into much detail.

Dask

Dask is a array model extension and task scheduler. By using the new array classes, you can
automa�cally distribute opera�ons across mul�ple CPUs.

Dask is very popular for data analysis and is used by a number of high-level Python libraries:

https://cffi.readthedocs.io/
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://pybind11.readthedocs.io/
https://cffi.readthedocs.io/
https://pyo3.rs/
https://dask.org/

Dask arrays scale NumPy (see also xarray
Dask dataframes scale Pandas workflows
Dask-ML scales Scikit-Learn

Dask divides arrays into many small pieces (chunks), as small as necessary to fit it into
memory. Opera�ons are delayed (lazy compu�ng) e.g. tasks are queue and no computa�on is
performed un�l you actually ask values to be computed (for instance print mean values).
Then data is loaded into memory and computa�on proceeds in a streaming fashion, block-by-
block.

💬 Example from dask.org

Exercises, Dask

✍ Dask-Examples (op�onal)

Dask examples illustrate the usage of dask and can be run interac�vely through mybinder.
Start an interac�ve session on mybinder and test/run a few dask examples.

Task queues

A task queue has a scheduler which takes a list of small jobs and distributes them to runners
for computa�on. It serves as a synchroniza�on layer and may be useful for embarrassingly
parallel jobs.

There are different descrip�ons of task queues in Python. Job runners ask the queue for the
task which needs to be done next. If you can divide your job into many small parts, this may
be useful to you. However, if you have a cluster with a job scheduler, this may be a bit
redundant.

See also

Thinking about Concurrency, Raymond He�nger. Good introduc�on to simple and safe
concurrent code.
Introduc�on to Numba and Cython.
More detailed exposi�on of parallel compu�ng in Python.
Introduc�on to Dask for scalable analy�cs.

Arrays implement the Numpy API

import dask.array as da

x = da.random.random(size=(10000, 10000),
 chunks=(1000, 1000))

x + x.T - x.mean(axis=0)

It runs using multiple threads on your machine.

It could also be distributed to multiple machines

https://xarray.pydata.org/en/stable/
https://github.com/dask/dask-examples
https://mybinder.org/
https://mybinder.org/v2/gh/dask/dask-examples/master?urlpath=lab
https://www.fullstackpython.com/task-queues.html
https://youtu.be/Bv25Dwe84g0
https://enccs.github.io/hpda-python/performance-boosting/
https://enccs.github.io/hpda-python/parallel-computing/
https://enccs.github.io/hpda-python/dask/

 Keypoints

Pure Python is not very good for highly parallel code.
Luckily it interfaces to many things which are good, and give you the full control you
need.
Combining vectorized func�ons (NumPy, Scipy, pandas, etc.) with the parallel
strategies listed here will get you very far.
Another popular framework similar to mul�processing is joblib.

Packaging

❓ Ques�ons

How to organize Python projects larger than one script?
What is a good file and folder structure for Python projects?
How can you make your Python func�ons most usable by your collaborators?
How to prepare your code to make a Python package?
How to publish your Python package?

 Objec�ves

Learn to iden�fy the components of a Python package
Learn to create a Python package
Learn to publish a Python package

Organizing Python projects

Python projects o�en start as a single script or Jupyter notebook but they can grow out of a
single file.

In the Scripts episode we have also learned how to import func�ons and objects from other
Python files (modules). Now we will take it a step further.

Recommenda�ons:

Collect related func�ons into modules (files).
Collect related modules into packages (we will show how).
Add a LICENSE file to your code from choosealicense.com (see So�ware Licensing and
Open source explained with cakes).
Write a README.md file describing what the code does and how to use it.
It is also recommended to document your package.
When the project grows, you might need automated tes�ng.

https://joblib.readthedocs.io/en/latest/
https://choosealicense.com/
https://github.com/coderefinery/social-coding/blob/main/licensing-and-cakes.md
https://github.com/coderefinery/social-coding/blob/main/licensing-and-cakes.md
https://coderefinery.github.io/documentation/
https://coderefinery.github.io/testing/

To have a concrete but s�ll simple example, we will create a project consis�ng of 3 func�ons,
each in its own file. We can then imagine that each file would contain many more func�ons.
To make it more interes�ng, one of these func�ons will depend on an external library: scipy .

These are the 3 files:

adding.py

subtrac�ng.py

integra�ng.py

We will add a fourth file:

__init__.py

This __init__.py file will be the interface of our package/library. It also holds the package
docstring and the version string. Note how it imports func�ons from the various modules
using rela�ve imports (with the dot).

This is how we will arrange the files in the project folder/repository:

def add(x, y):

 return x + y

def subtract(x, y):

 return x - y

from scipy import integrate

def integral(function, lower_limit, upper_limit):

 return integrate.quad(function, lower_limit, upper_limit)

"""

Example calculator package.

"""

from .adding import add

from .subtracting import subtract

from .integrating import integral

__version__ = "0.1.0"

Now we are ready to test the package. For this we need to be in the “root” folder, what we
have called the project-folder. We also need to have scipy available in our environment:

The package is not yet pip-installable, though. We will make this possible in the next sec�on.

Testing a local pip install

To make our example package pip-installable we need to add one more file:

This is how pyproject.toml looks:

pyproject.toml

project-folder

├── calculator

│ ├── adding.py
│ ├── __init__.py

│ ├── integrating.py

│ └── subtracting.py

├── LICENSE

└── README.md

from calculator import add, subtract, integral

print("2 + 3 =", add(2, 3))

print("2 - 3 =", subtract(2, 3))

integral_x_squared, error = integral(lambda x: x * x, 0.0, 1.0)
print(f"{integral_x_squared = }")

project-folder

├── calculator

│ ├── adding.py

│ ├── __init__.py
│ ├── integrating.py

│ └── subtracting.py

├── LICENSE

├── README.md

└── pyproject.toml

Note how our package requires scipy and we decided to not pin the version here (see
Version pinning for package creators).

Now we have all the building blocks to test a local pip install. This is a good test before trying
to upload a package to PyPI or test-PyPI (see PyPI (The Python Package Index) and conda
ecosystem)

 Note

Some�me you need to rely on unreleased, development versions as dependencies and this
is also possible. For example, to use the latest xarray you could add:

➡ See also

pip requirement specifiers
pyOpenSci tutorial on pyproject.toml metadata

Exercise 1

✍ Packaging-1

To test a local pip install:

Create a new folder outside of our example project
Create a new virtual environment (Dependency management)
Install the example package from the project folder into the new environment:

[build-system]

requires = ["setuptools>=61.0"]

build-backend = "setuptools.build_meta"

[project]

name = "calculator-myname"

description = "A small example package"

version = "0.1.0"
readme = "README.md"

authors = [

 { name = "Firstname Lastname", email = "firstname.lastname@example.org" }

]

dependencies = [
 "scipy"

]

dependencies = [

 "scipy",

 "xarray @ https://github.com/pydata/xarray/archive/main.zip"
]

https://pip.pypa.io/en/stable/reference/requirement-specifiers/
https://www.pyopensci.org/python-package-guide/tutorials/pyproject-toml.html

Test the local installa�on:

Make a change in the subtract func�on above such that it always returns a float
return float(x - y) .

Open a new Python console and test the following lines. Compare it with the previous
output.

Sharing packages via PyPI

👀 Demo

Most people will watch and observe this, due to the speed with which we will move.

Once we are able to pip-install the example package locally, we are ready for upload.

We exercise by uploading to test-PyPI, not the real PyPI, so that if we mess things up,
nothing bad happens.

We need two more things:

We will do this using Twine so you need to pip install that, too.
You need an account on test-PyPI

Let’s try it out. First we create the distribu�on package:

We need twine:

pip install --editable /path/to/project-folder/

from calculator import add, subtract, integral

print("2 + 3 =", add(2, 3))

print("2 - 3 =", subtract(2, 3))

integral_x_squared, error = integral(lambda x: x * x, 0.0, 1.0)

print(f"{integral_x_squared = }")

from calculator import subtract

print("2 - 3 =", subtract(2, 3))

$ python3 -m build

https://test.pypi.org/
https://pypi.org/
https://twine.readthedocs.io/
https://test.pypi.org/

And use twine to upload the distribu�on files to test-PyPI:

 Note

To generate an API token, proceed to the Create API token page in test-PyPI. You will be
prompted for your password.

✔ The long-version for finding the Create API token page

1. Log on to test-PyPI at h�ps://test.pypi.org
2. In the top-right corner, click on the drop-down menu and click Account se�ngs or

follow this link.
3. Scroll down to the sec�on API tokens and click the bu�on Add API token, which

opens up the Create API token page.

1. Under Token name write something memorable. It should remind you the purpose or
the name of the computer, such that when you are done using it, you can safely delete
it.

2. Under Scope select Entire account (all projects) .
3. Click on Create token.
4. Click on Copy token once a long string which starts with pypi- is generated.

Paste that token back into the terminal where twine upload ... is running and press
ENTER.

Once this is done, create yet another virtual environment and try to install from test-PyPI
(adapt myname).

$ pip install twine

$ twine upload -r testpypi dist/*

Uploading distributions to https://test.pypi.org/legacy/

Enter your API token:

Linux / macOS Windows

https://test.pypi.org/manage/account/token/
https://test.pypi.org/
https://test.pypi.org/
https://test.pypi.org/manage/account/#api-tokens
https://test.pypi.org/manage/account/token/

Tools that simplify sharing via PyPI

The solu�on that we have used to create the example package (using setuptools and
twine) is not the only approach. There are many ways to achieve this and we avoided going

into too many details and comparisons to not confuse too much. If you web-search this, you
will also see that recently the trend goes towards using pyproject.toml as more general
alterna�ve to the previous setup.py .

There are at least two tools which try to make the packaging and PyPI interac�on easier:

Poetry
Flit

If you upload packages to PyPI or test PyPI o�en you can create an API token and save it in
the .pypirc file.

Building a conda package and share it

 Prerequisites

To generate a conda build recipe, the package grayskull and to build it, the package
conda-build are required. You may install these with Anaconda Navigator or from the

command line:

The simplest way for crea�ng a conda package for your python script is to first publish it in
PyPI following the steps explained above.

Building a python package with grayskull and conda-build

 $ python3 -m venv venv-calculator

 $ source venv-calculator/bin/activate

 $ which python
 $ python3 -m pip install \

 -i https://test.pypi.org/simple/ \

 --extra-index-url https://pypi.org/simple/ \

 calculator-myname

 $ deactivate

$ conda install -n base grayskull conda-build

https://python-poetry.org/
https://flit.pypa.io/
https://packaging.python.org/en/latest/specifications/pypirc/#common-configurations
https://packaging.python.org/en/latest/specifications/pypirc/#common-configurations
https://pypi.org/

Once build, the conda package can be installed locally. For this example, we will use runtest.
runtest is a numerically tolerant end-to-end test library for research so�ware.

1. Generate the recipe by execu�ng (grayskull or conda grayskull):

The command above will create a new folder called runtest containing a file meta.yaml,
the conda recipe for building the runtest package.

2. View the contents of meta.yaml and ensure requirements :

In the requirements above, we specified what is required for the host and for running the
package.

 Remark

For pure python recipes, this is all you need for building a python package with conda.
If your package needs to be built (for instance compila�on), you would need addi�onal
files e.g. build.sh (to build on Linux/Mac-OSX) and bld.bat (to build on Windows
systems). You can also add test scripts for tes�ng your package. See documenta�on

3. Build your package with conda

Your package is now ready to be build with conda:

 Conda package loca�on

Look at the messages produced while building. The loca�on of the local conda
package is given (search for anaconda upload):

$ conda grayskull pypi runtest

requirements:

 host:
 - python

 - flit-core >=2,<4

 - pip

 run:

 - python

$ conda build runtest

/home/username/miniforge3/conda-bld/noarch/runtest-2.3.4-py_0.tar.bz2

https://pypi.org/project/runtest/
https://github.com/bast/runtest
https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#host
https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#run
https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs.html#writing-the-build-script-files-build-sh-and-bld-bat

The prefix /home/username/miniforge3/ may be different on your machine. depending
on your opera�ng system (Linux, Mac-OSX or Windows). The sub-folder is named
noarch since it is a pure-python package and the recipe indicates the same.

If package contained compiled code then the sub-folder would have been named win-
64 or linux-64 . It could then be converted to other pla�orms using conda convert.

4. Check within new environment

It is not necessary to create a new conda environment to install it but as explained in
previous episode, it is good prac�ce to have isolated environments.

We can then check runtest has been successfully installed in local-runtest conda
environment. Open a new Terminal with local-runtest environment (either from the
command line:

or via Anaconda Navigator (Open Terminal), import runtest and check its version:

 Building a conda package from scratch

It is possible to build a conda package from scratch without using conda grayskull. We
recommend you to check the conda-build documenta�on for more informa�on.

To be able to share and install your local conda package anywhere (on other pla�orms), you
would need to upload it to a conda channel (see below).
Publishing a python package

Upload your package to conda-forge: conda-forge is a conda channel: it contains
community-led collec�on of recipes, build infrastructure and distribu�ons for the conda
package manager. Anyone can publish conda packages to conda-forge if certain guidelines
are respected.
Upload your package to bioconda: bioconda is a very popular channel for the conda
package manager specializing in bioinforma�cs so�ware. As for conda-forge, you need to
follow their guidelines when building conda recipes.

You can also create your own conda channel for publishing your packages.

$ conda create -n local-runtest --use-local runtest

$ conda activate local-runtest

import runtest
print(runtest.__version__)

https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs.html#converting-a-package-for-use-on-all-platforms
https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html
https://conda-forge.org/
https://conda-forge.org/docs/maintainer/adding_pkgs/
https://conda-forge.org/docs/maintainer/guidelines/
https://bioconda.github.io/
https://bioconda.github.io/contributor/guidelines.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/create-custom-channels.html

 Keypoints

It is worth it to organize your code for publishing, even if only you are using it.
PyPI is a place for Python packages
conda is similar but is not limited to Python

Web APIs with Python

❓ Ques�ons

Have you ever needed to get some data from somewhere else on the web?

 Objec�ves

Understand a web server and API and why might you need to talk to one.
Basics of the requests Python library
Some lightweight recommenda�ons on saving data when you get to more serious data
download.

Requests

Requests is a Python library that makes requests to web servers. It provides a nice interface
and is one of the go-to tools. It does the raw data-download for simple web servers.

First, let’s take a tour of the Requests webpage. Below, we embed the Requests website into
a Jupyter notebook, but you might want to open it in another browser tab:
h�ps://requests.readthedocs.io/en/latest/

Retrieve data from API

An API (Applica�on Programming Interface) is the defini�on of the way computer programs
communicate with each other. We use Requests to connect to the API of a web server, tell it
what we want, and it returns it to us. This is called the request-response cycle.

We can find a list of some free APIs (available without authen�ca�on) at
h�ps://apipheny.io/free-api/#apis-without-key . These APIs can be used for developing and
tes�ng our code.

Embed the requests homepage

from IPython.display import IFrame

requests_documentation_url = "https://requests.readthedocs.io/en/latest/"
IFrame(requests_documentation_url, '100%', '30%')

https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://apipheny.io/free-api/#apis-without-key

Let’s make a request to the Cat Fact API. If we go to h�ps://ca�act.ninja/, it gives us the
defini�ons:

GET /fact is the API endpoint.
GET is the type of request we make and
/fact is the path.

You can even test this in your web browser: h�ps://ca�act.ninja/fact

Using the Requests library, we do this with get() .

The requests.Response object tells us what the server said. We can access the response
content using content .

The response content is in the JSON format and Requests gives us the json() method that
decodes it and returns the corresponding data as Python objects. This is equivalent to
json.load() .

(Note that, normally, we could study the API documenta�on to check the response format
beforehand. However, many �mes manual inspec�on and trial-and-error is needed, as we did
here.)

Import

import requests

URL

url = 'https://catfact.ninja/fact'

Make a request

response = requests.get(url)

response_content = response.content

Display

display(response_content)

response_json = response.json()

Display

display(response_json)

https://catfact.ninja/
https://catfact.ninja/fact
https://requests.readthedocs.io/en/latest/api/#requests.get
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response.content
https://en.wikipedia.org/wiki/JSON
https://requests.readthedocs.io/en/latest/api/#requests.Response.json
https://docs.python.org/3/library/json.html#json.load

API which requires parameters

Let’s then examine another API which accepts parameters to specify the informa�on request.
In par�cular, we will request a list of Finnish universi�es from
h�p://universi�es.hipolabs.com using the /search end point and a parameter country with
value Finland, like this: http://universities.hipolabs.com/search?country=Finland .

URLs containing parameters can always be constructed manually using the & character and
then lis�ng the parameter (key, value) pairs as above.

However, Requests allows us to provide the parameters as a dic�onary of strings, using the
params keyword argument to get() . This is easier to read and less error-prone.

Exercises 1

✍ Exercise WebAPIs-1: Request different ac�vity sugges�ons from the Bored API

Go to the documenta�on page of the Bored API. The Bored API is an open API which can
be used to randomly generate ac�vity sugges�ons.

URL

url = 'http://universities.hipolabs.com/search?country=Finland'

Make a request

response = requests.get(url)

Decode JSON

response_json = response.json()

Display

display(response_json[:2])

URL

url = 'http://universities.hipolabs.com/search'

Make the parameter dictionary

parameters = {'country' : 'Finland'}

Get response
response = requests.get(url, params=parameters)

Decode JSON

response_json = response.json()

Display

display(response_json[:2])

https://requests.readthedocs.io/en/latest/user/quickstart/#passing-parameters-in-urls
http://universities.hipolabs.com/
https://requests.readthedocs.io/en/latest/api/#requests.get
https://www.boredapi.com/documentation

Let’s examine the first sample query on the page h�p://www.boredapi.com/api/ac�vity/
with a sample JSON response

Let’s replicate the query and see if we can get another random sugges�on.

Next, let’s try to narrow down the sugges�ons by adding some parameters

type
par�cipants

All possible parameter values are presented at the bo�om of the bored documenta�on page.
Relevant parts in the Requests documenta�on

{

 "activity": "Learn Express.js",

 "accessibility": 0.25,
 "type": "education",

 "participants": 1,

 "price": 0.1,

 "link": "https://expressjs.com/",

 "key": "3943506"
}

Import module

import requests

URL of the activity API end point
url = "http://www.boredapi.com/api/activity/"

Send the request using the get() function

response = requests.get(url)

Show the JSON content of the response
display(response.json())

Define some parameters

params = {

 'type' : 'education',

 'participants' : 1,
}

Send the request using get() with parameters

response = requests.get(url, params)

https://requests.readthedocs.io/en/latest/user/quickstart/#parameters
https://requests.readthedocs.io/en/latest/user/quickstart/#parameters
https://requests.readthedocs.io/en/latest/user/quickstart/#parameters

Let’s narrow the request further with more parameters

price range
accessibility range

(All possible parameter values are again presented at the bo�om of the document page.)

Exercises 2

✍ Exercise WebAPIs-2: Examine request and response headers

Request headers are similar to request parameters but usually define meta informa�on
regarding, e.g., content encoding (gzip, u�-8) or user iden�fica�on (user-agent/user
ID/etc., password/access token/etc.).

Let’s first make a request.

Show the JSON content of the response

display("Response")

display(response.json())

Define some parameters

params = {

 'type' : 'social',

 'participants' : 2,

 'minprice' : 0,
 'maxprice' : 1000,

}

Send the request using get() with parameters

response = requests.get(url, params)

Show the JSON content of the response

display(response.json())

display("")

Import modules

import requests

URL of the activity API end point

url = "http://www.boredapi.com/api/activity/"

Make the request using the get() function
response = requests.get(url)

https://requests.readthedocs.io/en/latest/user/quickstart/#response-headers

We can access the headers of the original request

We can also access the headers of the response

In many cases, the default headers

added automa�cally by Requests are sufficient. However, similarly to parameters, we can pass
custom headers to the get func�on as an argument.

This is useful when, for example, the API has restricted access and requires a user ID and/or
password as a part of the headers.

For examples of APIs using this type of authen�ca�on, see

Imgur API

For more on authen�ca�on, see also Requests documenta�on.

Exercises 3

✍ Exercise WebAPIs-3: Scrape links from a webpage (Advanced)

Let’s use Requests to get the HTML source code of www.example.com, examine it, and
use the Beau�ful Soup library to extract links from it. Note: This requires the extra bs4
Python package to be installed, which was not in our ini�al requirements. Consider this a

display("Request headers")

display(dict(response.request.headers))

display("Response headers")
display(dict(response.headers))

{'User-Agent': 'python-requests/2.28.1',

 'Accept-Encoding': 'gzip, deflate, br',

 'Accept': '*/*',

 'Connection': 'keep-alive'}

{'User-Agent': 'python-requests/2.28.1',

 'Accept-Encoding': 'gzip, deflate, br',

 'Accept': '*/*',

 'Connection': 'keep-alive',

 'example-user-id' : 'example-password'}

https://requests.readthedocs.io/en/latest/user/quickstart/#custom-headers
https://api.imgur.com/oauth2
https://requests.readthedocs.io/en/latest/user/authentication/
https://requests.readthedocs.io/en/latest/user/authentication/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

demo.

After exercises: Saving retrieved data to disk

Usually, we want to save the retrieved data to disk for later use. For example, we might
collect data for one year and later analyze it for a longitudinal study.

Import module

import requests

Define webpage to scrape

url = "http://www.example.com/"

Make a request for the URL

response = requests.get(url)

Examine the response

display(response.content)

Looks like HTML :) Let's access it using the text attribute

html = response.text

print(html)

Import beautiful soup module

from bs4 import BeautifulSoup

Create soup

soup = BeautifulSoup(html, 'html.parser')

Extract page title from the HTML

print(f"Found title: {soup.title.text}")

Extract links (hrefs) from the HTML
for link in soup.find_all('a'):

 print(f"Found link: {link.get('href')}")

Extract all text from the HTML

print(f"Found text: {soup.get_text()}")

To save the retrieved JSON objects to disk, it is prac�cal to use the JSONLINES file format.
The JSONLINES format contains a single valid JSON object on each line. This is preferable to
saving each object as its own file since we don’t, in general, want to end up with excessive
amounts of individual files (say, hundreds of thousands or millions).

For example, let’s retrieve three cat facts and save them to a JSONLINES file using the
jsonlines library.

We can then read the objects from the disk using the same library.

Wrap-up

 Keypoints

Requests is a common tool

Import

import requests

import jsonlines
import time

URL

url = 'https://catfact.ninja/fact'

Make three requests in loop and make a list of response JSON objects

for i in range(3):

 # Logging

 print(f"Make request {i}")

 # Make a request

 response = requests.get(url)

 # Decode to JSON
 response_json = response.json()

 # Open a jsonlines writer in 'append' mode

 with jsonlines.open('catfacts.jsonl', mode='a') as writer:

 # Write

 writer.write(response_json)

 # Sleep for one second between requests

 time.sleep(1)

Open a jsonlines reader

with jsonlines.open('catfacts.jsonl', mode='r') as reader:

 # Read and display

 for obj in reader:
 display(obj)

https://jsonlines.readthedocs.io/en/latest/

Web APIs may o�en require some trial and error, but actually ge�ng data is usually
not that difficult
Storing all the data and processing it well can be a much larger issue.

Software installation

This course is interac�ve and demonstrates many different tools. Thus, even beyond Python,
extra so�ware (Python libraries) needs to be installed. This page contains the instruc�ons.

Once the course starts, we don’t have �me to stop for installing so�ware.

Please make sure before the course that you have all the required so�ware installed or some
other way access to it. For example, the workshop could be done with a remote Jupyter
server, as long as you can use the terminal from the Jupyter (you need to be able to access
the command line for some lessons).

 Do you need help?

Par�cipants from a partner ins�tu�on are invited to install help sessions. (Hint: ask your
ins�tu�on to become a partner if it isn’t already!)

Otherwise, if you need installa�on help, show this page to someone around you and they
can probably help. These are rela�vely standard tools.

Don’t be afraid to ask for help. Installing scien�fic so�ware is harder than it should be and
it helps to have someone guide you through it.

Python

We expect you to have a working Python installa�on with some common libraries. We
currently recommend Miniforge, which includes the base and packages through a different,
freely usable channel. You can explore the op�ons in the tabs below.

 Python, conda, anaconda, miniforge, etc?

Unfortunately there’s a lot of jargon. We’ll go over this in the course but here is a crash
course:

Python is a programming language very commonly used in science, it’s the topic of this
course.
Conda is a package manager: it allows distribu�ng and installing packages, and is
designed for complex scien�fic code.
Mamba is a re-implementa�on of Conda to be much faster with resolving
dependencies and installing things.

An Environment is a self-contained collec�ons of packages which can be installed
separately from others. They are used so each project can install what it needs
without affec�ng others.
Anaconda is a commercial distribu�on of Python+Conda+many packages that all work
together. It used to be freely usable for research, but since ~2023-2024 it’s more
limited. Thus, we don’t recommend it (even though it has a nice graphical user
interface).
conda-forge is another channel of distribu�ng packages that is maintained by the
community, and thus can be used by anyone. (Anaconda’s parent company also hosts
conda-forge packages)
miniforge is a distribu�on of conda pre-configured for conda-forge. It operates via the
command line.
miniconda is a distribu�on of conda pre-configured to use the Anaconda channels.

Starting Python

You need to Python in a way that ac�vates conda/mamba.

Miniforge Anaconda Other op�ons

This is our recommended method - it can be used for any purpose and makes a strong
base for the future.

Follow the instruc�ons on the miniforge web page. This installs the base, and from here
other packages can be installed.

Miniforge uses the command line - this gives you the most power but can feel unfamiliar.
See the command line crash course for an intro.

Miniforge Anaconda Other op�ons

Linux / MacOS Windows

Linux/MacOS: Each �me you start a new command line terminal, you can ac�vate
Miniforge by running. This is needed so that Miniforge is usable wherever you need,
but doesn’t affect any other so�ware on your computer (this is not needed if you
choose “Do you wish to update your shell profile to automa�cally ini�alize conda?”,
but then it will always be ac�ve):

$ source ~/miniforge3/bin/activate

https://github.com/conda-forge/miniforge
https://scicomp.aalto.fi/scicomp/shell/

Python for SciComp software environment

Once Python and conda/mamba are installed, you can use it to install an environment. An
environment is a self-contained set of extra libraries - different projects can use different
environments to not interfere with each other. This environment will have all of the so�ware
needed for this par�cular course.

JupyterLab

We do most of the lessons from JupyterLab (and JupyterLab provides most of the other tools
we need).

Miniforge Anaconda Other op�ons

This environment file contains all packages needed for the course, and can be installed
with. The following command will install an environment named python-for-scicomp
(there may be lots of warning messages: this is OK if it s�ll goes through):

Each �me you start a new command line, you need to ac�vate miniforge and this
environment:

Linux / MacOS Windows

$ mamba env create -n python-for-scicomp -f

https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/software/environment.yml

Linux / MacOS Windows

$ source ~/miniforge3/bin/activate

$ conda activate python-for-scicomp

https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/software/environment.yml

Verification of Python and JupyterLab

Watch the video

See this verifica�on in video form - if you can do this, you are ready to go for day one.
Your exact steps may be a bit different.

Remember that you need to ac�vate the environment first - see the step above.

Verify that you can start a Jupyter notebook. We will learn how to do this in day 1, but you
can try running print("Hello, world!") if you want.

Miniforge Anaconda

JupyterLab was instaled in the previous step. To run it, first, start the Miniforge
command line interface. Remember, you may need to ac�vate Miniforge and the
environment first.

Linux / MacOS Windows

$ source ~/miniforge3/bin/activate

$ conda activate python-for-scicomp

$ jupyter-lab

Miniforge Anaconda

You can start JupyterLab from the command line:

$ jupyter-lab

(... Jupyter starts in a web browser)

https://youtu.be/OEX1ss_HCHc

Star�ng a Jupyter Notebook from JupyterLab.

Text editor

For one por�on of the course, you will need a text editor. If you don’t know what to use, you
can use the text editor that comes from JupyterLab and it will do everything you need - no
extra installa�on needed.

Command line

You need access to the command line for some lessons. JupyterLab includes it, so no extra
installa�on is needed. If you want to test in advance:

You can start it from JupyterLab (recommended):

 Other editors

Because we need to be simple in our teaching, we only teach the most basic editors. We
encourage you to try out more advanced ones yourself.

For other editors, see the CodeRefinery instruc�ons. You don’t exactly need a terminal
editor - the graphical ones, such as VSCode or whatever you use now, will work as well.

https://coderefinery.github.io/installation/editors/

From the JupyterLab launcher, select “Terminal”.

Verification of the command line

To verify command line usage, type the following commands (without the $), and you
should see the corresponding output that lists the Python version:

Any recent version of Python 3 should work for the course (for example 3.8 or higher).

Zoom

If this is an online workshop, it might use Zoom. You can see CodeRefinery instruc�ons for it.

 Other ways to access the command line

From the Anaconda Navigator:

From the Anaconda Navigator, you can select “environments” on the le�, then click on one,
then the arrow, then “Open terminal”.

From your opera�ng system’s terminal applica�ons, if you ac�vate Anaconda.

$ python3 -V

Python 3.8.3

Or python... if it's installed as that

$ python -V
Python 3.8.3

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/jupyterlab-terminal.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/jupyterlab-terminal.png
https://coderefinery.github.io/installation/zoom/

Need help?

If you have access, come to one of the installa�on help sessions. Or, ask your colleagues:
these are standard tools and you can definitely find someone can help you get set up!

See also

Research So�ware Hour on conda
Conda manual (technical)
Anaconda individual edi�on home
Anaconda ge�ng started

Quick reference

Pandas cheatsheet (pandas.pydata.org)
Pandas cheatsheet (via Datacamp)
Numpy cheatsheet (via Datacamp)
JupyterLab cheatsheet
Matplotlib cheatsheet (via Datacamp)
Numpy, Pandas, Matplotlib, Scikit-learn all together

List of exercises

Full list

This is a list of all exercises and solu�ons in this lesson, mainly as a reference for helpers and
instructors. This list is automa�cally generated from all of the other pages in the lesson. Any
single teaching event will probably cover only a subset of these, depending on their interests.

Instructor’s guide

Learner personas

A is a early career PhD researcher who has been using Python a bit, but is not sure what they
know or don’t know. They want to be able to do their research more efficiently and make
sure that they are using the right tools. A may know that numpy exists, etc. and could
theore�cally read some about it themselves, but aren’t sure if they are going in the right
direc�on.

A2 can use numpy and pandas, but have learned li�le bits here and there and hasn’t had a
comprehensive introduc�on. They want to ensure they are using best prac�ces. (Baseline of
high-level packages)

https://www.youtube.com/watch?v=ddCde5Nu2qo&list=PLpLblYHCzJAB6blBBa0O2BEYadVZV3JYf
https://docs.conda.io/en/latest/
https://www.anaconda.com/products/distribution
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
http://datacamp-community-prod.s3.amazonaws.com/f04456d7-8e61-482f-9cc9-da6f7f25fc9b
https://www.datacamp.com/community/data-science-cheatsheets
http://datacamp-community-prod.s3.amazonaws.com/da466534-51fe-4c6d-b0cb-154f4782eb54
https://www.datacamp.com/community/data-science-cheatsheets
https://comp.anu.edu.au/courses/comp2420/labs/lab-1/helpManuals/JupyterLab-Cheatsheet.pdf
https://datacamp-community-prod.s3.amazonaws.com/e1a8f39d-71ad-4d13-9a6b-618fe1b8c9e9
https://www.datacamp.com/cheat-sheet
https://web.itu.edu.tr/iguzel/files/Python_Cheat_Sheets.pdf

B is a mid-to-late undergraduate student who has used Python in some classes. They have
possibly learned the syntax and enough to use it in courses, but in a course-like manner
where they are expected to create everything themselves.

Prerequisites: - Knowing basic Python syntax - Watch the command line crash course, if you
aren’t familiar.

Not prerequisites: - Any external libraries, e.g. numpy - Knowing how to make scripts or use
Jupyter

About each section

In general, “Python for Scien�fic Compu�ng could be a mul�-year course. We can’t even
pretend to really teach even a small frac�on of it. We can, however, introduce people to
things that can very easily be missed in the typical academic career path.

Python intro: We can’t really replace a Python tutorial, but here we try to outline some of
the main points. We don’t go over this in the course.
Jupyter: Jupyter is somewhat useful, but the main reason we go over it is that it provides
a convenient user interface for the other programming lessons (it’s easier to spend a bit of
�me with Jupyter than expect people to be able to use some editor/IDE/shell/etc). So, we
do start from the beginning, so that people can do the other lessons, but also try to teach
some advanced �ps and tricks.
Numpy: The basic of much of the rest of scipy, so we need to cover it. We try to get the
main principles out, but if someone already knows it this can be a bit boring. We try to
make sure everyone comes out with an apprecia�on for vectoriza�on and broadcas�ng.
Pandas: A lot of similar goals to the Numpy sec�on, especially the concepts behind
Dataframes that one needs to know in order to read other documenta�on.
Visualiza�on: Matplotlib is ge�ng a bit old, but is s�ll the backbone of other plo�ng
packages. We try to get forth the ideas of the matplotlib API that can be seen in other
packages and the importance of scripted plots.
Data formats: Input/output/storage is a common task, and can easily either be a
bo�leneck or a huge mess. This lessons tries to show some best prac�ces with data
formats and, as usual, get the idea to not “do it yourself”. Pandas is used as a common
framework, but we should point out there are plenty of other op�ons.
Scripts: The most important lesson here is to break out of Jupyter/run bu�ons of editors.
If you can’t make actual programs with an actual interface, you can’t scale up.

This is the first lesson to introduce the command line. We recommend being as simple
as possible: at least demonstrate the JupyterLab terminal and discuss the bigger
picture behind what it means and why.
This is also the first lesson to use non-Jupyter code editor. We recommend again being
simple: use the JupyterLab code editor to start off, and carefully explain what is going
on.

Scipy: We don’t cover much here (this is super short), but the point is scipy exists and the
concept of wrapping exis�ng C/fortran libraries and so on.

Library ecosystem: This was an overview of the types of packages available in the “scipy
ecosystem”, which is a large and ill-defined thing. But there is another point: choosing
what to use. Do you trust a half-done thing published on someone’s personal webpage? If
it’s on Github? How do you make your code more reusable? When coming from academic
courses, you get a “build it yourself” idea, which isn’t sustainable in research.
Parallel programming:
Dependencies: The main point here is environments, another thing you o�en don’t learn
in courses.

There is a lot of material here. Consider what you will demo, what will be done as
exercises, and what is advanced/op�onal. However, it is the fourth-day lesson that is
most interac�ve, so it is OK if it take a while to go through everything.
If someone else installs Anaconda for a user (e.g. admin-managed laptop), the conda
environment crea�ons (with --name , possibly with --prefix too?) may not work. Be
prepared for this and men�on it. You don’t need to solve the problem but
acknowledge that the lesson becomes a demo. The virtualenv part should hopefully
work for them.

Binder: Binder exists and can help make code reproducible/reusable by others.
Packaging: How to make your code reusable by others. By the �me we get here, people
are �red and the topics get involved. We more explicitly say “you might want to watch
and take this as a demo”.

In depth analysis of some selected file formats

Here is a selec�on of file formats that are commonly used in data science. They are
somewhat ordered by their intended use.

Storing arbitrary Python objects

Pickle

 Key features

Type: Binary format
Packages needed: None (pickle -module is included with Python).
Space efficiency: 🟨
Arbitrary data: ✅
Tidy data: 🟨
Array data: 🟨
Long term archival/sharing: ❌! See warning below.
Best use cases: Saving Python objects for debugging.

Warning

Loading pickles that you have not created is risky as they can contain arbitrary executable
code.

https://docs.python.org/3/library/pickle.html#module-pickle

Do not unpickle objects from sources that you do not trust!

Pickle is Python’s own serializa�on library. It allows you to store Python objects into a
binary file, but it is not a format you will want to use for long term storage or data sharing. It
is best suited for debugging your code by saving the Python variables for later inspec�on:

Exercise 1

✍ Exercise

Create an arbitrary python object (for example, a string or a list). Pickle it.

Read the pickled object back in and check if it matches the original one.

✔ Solu�on

Storing tidy data

CSV (comma-separated values)

 Key features

Type: Text format
Packages needed: numpy, pandas
Space efficiency: ❌

import pickle

with open('data_array.pickle', 'wb') as f:
 pickle.dump(data_array, f)

with open('data_array.pickle', 'rb') as f:

 data_array_pickle = pickle.load(f)

import pickle

my_object=['test', 1, 2, 3]

with open('string.pickle', 'wb') as f:

 pickle.dump(my_object, f)

with open('string.pickle', 'rb') as f:

 my_pickled_object = pickle.load(f)

print(my_object, my_pickled_object)

print(my_object == my_pickled_object)

https://docs.python.org/3/library/pickle.html#module-pickle

Arbitrary data: ❌
Tidy data: ✅
Array data: 🟨
Long term archival/sharing: ✅
Best use cases: Sharing data. Small data. Data that needs to be human-readable.

CSV is by far the most popular file format, as it is human-readable and easily shareable.
However, it is not the best format to use when you’re working with big data.

Pandas has a very nice interface for wri�ng and reading CSV files with to_csv- and read_csv-
func�ons:

Numpy has rou�nes for saving and loading arrays as CSV files as well:

 Storing data in CSVs can reduce data precision

dataset.to_csv('dataset.csv', index=False)

dataset_csv = pd.read_csv('dataset.csv')

np.savetxt('data_array.csv', data_array)

data_array_csv = np.loadtxt('data_array.csv')

https://pandas.pydata.org/docs/user_guide/io.html#io-store-in-csv
https://pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table
https://numpy.org/doc/stable/reference/routines.io.html#text-files

When working with floa�ng point numbers you should be careful to save the data
with enough decimal places so that you won’t lose precision.

For example, double-precision floa�ng point numbers have ~16 decimal places of
precision, but if you use normal Python to write these numbers, you can easily lose
some of that precision. Let’s consider the following example:

CSV wri�ng rou�nes in Pandas and numpy try to avoid problems such as these by
wri�ng the floa�ng point numbers with enough precision, but even they are not
infallible. We can check whether our wri�en data matches the generated data:

In our case some rows of dataset_csv loaded from CSV do not match the original
dataset as the last decimal can some�mes be rounded due to complex technical

reasons.

Storage of these high-precision CSV files is usually very inefficient storage-wise.

Binary files, where floa�ng point numbers are represented in their na�ve binary
format, do not suffer from such problems.

Feather

 Requires addi�onal packages

import numpy as np

test_number = np.sqrt(2)

Write the number in a file
test_file = open('sqrt2.csv', 'w')

test_file.write('%f' % test_number)

test_file.close()

Read the number from a file

test_file = open('sqrt2.csv', 'r')
test_number2 = np.float64(test_file.readline())

test_file.close()

Calculate the distance between these numbers

print(np.abs(test_number - test_number2))

dataset.compare(dataset_csv)

np.all(data_array == data_array_csv)

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://docs.python.org/3/tutorial/floatingpoint.html#representation-error
https://docs.python.org/3/tutorial/floatingpoint.html#representation-error

Using Feather requires pyarrow-package to be installed.

You can try installing pyarrow with

or you can take this as a demo.

 Key features

Type: Binary format
Packages needed: pandas, pyarrow
Space efficiency: ✅
Arbitrary data: ❌
Tidy data: ✅
Array data: ❌
Long term archival/sharing: ❌
Best use cases: Temporary storage of �dy data.

Feather is a file format for storing data frames quickly. There are libraries for Python, R and
Julia.

We can work with Feather files with to_feather- and read_feather-func�ons:

Feather is not a good format for storing array data, so we won’t present an example of that
here.
Parquet

 Requires addi�onal packages

!pip install pyarrow

dataset.to_feather('dataset.feather')

dataset_feather = pd.read_feather('dataset.feather')

https://arrow.apache.org/docs/python
https://arrow.apache.org/docs/python/feather.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-feather

Using Parquet requires pyarrow-package to be installed.

You can try installing PyArrow with

or you can take this as a demo.

 Key features

Type: Binary format
Packages needed: pandas, pyarrow
Space efficiency: ✅
Arbitrary data: 🟨
Tidy data: ✅
Array data: 🟨
Long term archival/sharing: ✅
Best use cases: Working with big datasets in �dy data format. Archival of said data.

Parquet is a standardized open-source columnar storage format that is commonly used for
storing big data. Parquet is usable from many different languages (C, Java, Python, MATLAB,
Julia, etc.).

We can work with Parquet files with to_parquet- and read_parquet-func�ons:

Parquet can be used to store arbitrary data and arrays as well, but doing that is more
complicated so we won’t do that here.

Exercise 2

✍ Exercise

Create the example dataset :

!pip install pyarrow

dataset.to_parquet('dataset.parquet')

dataset_parquet = pd.read_parquet('dataset.parquet')

https://arrow.apache.org/docs/python
https://arrow.apache.org/docs/python/parquet.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-parquet

Save the dataset dataset as CSV. Load the dataset into a variable dataset_csv .
Use dataset.compare(dataset_csv) to check if loaded dataset matches the original
one.

✔ Solu�on

Dataset might not be completely the same. Some�mes the CSV format cannot fully
represent a floa�ng point value, which will result in rounding errors.

Storing array data

npy (numpy array format)

 Key features

Type: Binary format
Packages needed: numpy
Space efficiency: 🟨

import pandas as pd

import numpy as np

n_rows = 100000

dataset = pd.DataFrame(

 data={

 'string': np.random.choice(('apple', 'banana', 'carrot'), size=n_rows),
 'timestamp': pd.date_range("20130101", periods=n_rows, freq="s"),

 'integer': np.random.choice(range(0,10), size=n_rows),

 'float': np.random.uniform(size=n_rows),

 },

)

import pandas as pd

import numpy as np

n_rows = 100000

dataset = pd.DataFrame(

 data={

 'string': np.random.choice(('apple', 'banana', 'carrot'), size=n_rows),

 'timestamp': pd.date_range("20130101", periods=n_rows, freq="s"),

 'integer': np.random.choice(range(0,10), size=n_rows),
 'float': np.random.uniform(size=n_rows),

 },

)

dataset.to_csv('dataset.csv', index=False)

dataset_csv = pd.read_csv('dataset.csv')

print(dataset.compare(dataset_csv))

Arbitrary data: ✅
Tidy data: ❌
Array data: ✅
Long term archival/sharing: ❌
Best use cases: Saving numpy arrays temporarily.

If you want to temporarily store numpy arrays, you can use the numpy.save() - and
numpy.load() -func�ons:

There also exists numpy.savez() -func�on for storing mul�ple datasets in a single file:

For big arrays it’s good idea to check other binary formats such as HDF5 or NetCDF4.

np.save - and np.savez -func�ons work with sparse matrices, but one can also use
dedicated scipy.sparse.save_npz- and scipy.sparse.load_npz-func�ons. Storing sparse
matrices using these func�ons can give huge storage savings.
HDF5 (Hierarchical Data Format version 5)

 Key features

Type: Binary format
Packages needed: numpy, pandas, PyTables, h5py
Space efficiency: ✅
Arbitrary data: ❌
Tidy data: ❌
Array data: ✅
Long term archival/sharing: ✅
Best use cases: Working with big datasets in array data format.

HDF5 is a high performance storage format for storing large amounts of data in mul�ple
datasets in a single file. It is especially popular in fields where you need to store big
mul�dimensional arrays such as physical sciences.

Pandas allows you to store tables as HDF5 with PyTables, which uses HDF5 to write the
files. You can create a HDF5 file with to_hdf- and read_parquet-func�ons:

np.save('data_array.npy', data_array)

data_array_npy = np.load('data_array.npy')

np.savez('data_arrays.npz', data_array0=data_array, data_array1=data_array)
data_arrays = np.load('data_arrays.npz')

data_arrays['data_array0']

https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://numpy.org/doc/stable/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.save_npz.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.load_npz.html
https://www.pytables.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-hdf5

For wri�ng data that is not a table, you can use the excellent h5py-package:

NetCDF4 (Network Common Data Form version 4)

 Requires addi�onal packages

Using NetCDF4 requires netCDF4- or h5netcdf-package to be installed. h5netcdf is
o�en men�oned as being faster to the official netCDF4-package, so we’ll be using it in
the example.

A great NetCDF4 interface is provided by a xarray-package.

You can try installing these packages with

or you can take this as a demo.

 Key features

Type: Binary format
Packages needed: pandas, netCDF4/h5netcdf, xarray
Space efficiency: ✅
Arbitrary data: ❌

dataset.to_hdf('dataset.h5', key='dataset', mode='w')

dataset_hdf5 = pd.read_hdf('dataset.h5')

import h5py

Writing:

Open HDF5 file

h5_file = h5py.File('data_array.h5', 'w')
Write dataset

h5_file.create_dataset('data_array', data=data_array)

Close file and write data to disk. Important!

h5_file.close()

Reading:

Open HDF5 file again

h5_file = h5py.File('data_array.h5', 'r')

Read the full dataset
data_array_h5 = h5_file['data_array'][()]

Close file

h5_file.close()

!pip install h5netcdf xarray

https://docs.h5py.org/en/stable/
https://unidata.github.io/netcdf4-python
https://github.com/h5netcdf/h5netcdf
https://docs.xarray.dev/en/stable/getting-started-guide/quick-overview.html#read-write-netcdf-files

Tidy data: ❌
Array data: ✅
Long term archival/sharing: ✅
Best use cases: Working with big datasets in array data format. Especially useful if the
dataset contains spa�al or temporal dimensions. Archiving or sharing those datasets.

NetCDF4 is a data format that uses HDF5 as its file format, but it has standardized structure
of datasets and metadata related to these datasets. This makes it possible to be read from
various different programs.

NetCDF4 is a common format for storing large data from big simula�ons in physical sciences.

Using interface provided by xarray :

Working with array data is easy as well:

The advantage of NetCDF4 compared to HDF5 is that one can easily add other metadata e.g.
spa�al dimensions (x , y , z) or �mestamps (t) that tell where the grid-points are
situated. As the format is standardized, many programs can use this metadata for
visualiza�on and further analysis.

Exercise 3

✍ Exercise

Create an example numpy array:

Write tidy data as NetCDF4

dataset.to_xarray().to_netcdf('dataset.nc', engine='h5netcdf')

Read tidy data from NetCDF4
import xarray as xr

dataset_xarray = xr.open_dataset('dataset.nc', engine='h5netcdf')

dataset_netcdf4 = dataset_xarray.to_pandas()

dataset_xarray.close()

Write array data as NetCDF4
xr.DataArray(data_array).to_netcdf('data_array.nc', engine='h5netcdf')

Read array data from NetCDF4

data_array_xarray = xr.open_dataarray('data_array.nc', engine='h5netcdf')

data_array_netcdf4 = data_array_xarray.to_numpy()

data_array_xarray.close()

n = 1000

data_array = np.random.uniform(size=(n,n))

Store the array as a npy.
Read the dataframe back in and compare it to the original one. Does the data match?

✔ Solu�on

Other file formats

JSON (JavaScript Object Notation)

 Key features

Type: Text format
Packages needed: None (json -module is included with Python).
Space efficiency: ❌
Arbitrary data: 🟨
Tidy data: ❌
Array data: ❌
Long term archival/sharing: ✅
Best use cases: Saving nested/rela�onal data, storing web requests.

JSON is a popular human-readable data format. It is especially common when dealing with
web applica�ons (REST-APIs etc.).

You rarely want to keep your data in this format, unless you’re working with nested data with
mul�ple layers or lots of interconnec�ons.

Similarly to other popular files, Pandas can write and read json files with to_json() - and
read_json() -func�ons:

Excel

import numpy as np

n = 1000

data_array = np.random.uniform(size=(n,n))

np.save('data_array.npy', data_array)

data_array_npy = np.load('data_array.npy')
np.all(data_array == data_array_npy)

dataset.to_json('dataset.json')

dataset_json = pd.read_json('dataset.json')

https://docs.python.org/3/library/json.html#module-json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json

 Requires addi�onal packages

Using Excel files with Pandas requires openpyxl-package to be installed.

 Key features

Type: Text format
Packages needed: openpyxl
Space efficiency: ❌
Arbitrary data: ❌
Tidy data: 🟨
Array data: ❌
Long term archival/sharing: ✅
Best use cases: Sharing data in many fields. Quick data analysis.

Excel is very popular in social sciences and economics. However, it is not a good format for
data science.

See Pandas’ documenta�on on working with Excel files.
Graph formats (adjency lists, gt, GraphML etc.)

 Key features

Type: Many different formats
Packages needed: Depends on a format.
Space efficiency: 🟨
Arbitrary data: ❌
Tidy data: ❌
Array data: ❌
Long term archival/sharing: 🟨
Best use cases: Saving graphs or data that can be represented as a graph.

There are plenty of data formats for storing graphs. We won’t list them here as op�mal data
format depends heavily on the graph structure.

One can use func�ons in libraries such as networkx, graph-tool, igraph to read and write
graphs.

Who is the course for?

The course is targeted towards these learner personas:

A is a early career PhD researcher who has been using Python a bit, but is not sure what
they know or don’t know. They want to be able to do their research more efficiently and
make sure that they are using the right tools. A may know that numpy exists, etc. and

https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://www.bbc.com/news/technology-54423988
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel
https://networkx.org/documentation/stable/reference/readwrite/index.html
https://graph-tool.skewed.de/static/doc/quickstart.html#graph-i-o
https://igraph.readthedocs.io/en/stable/tutorial.html#igraph-and-the-outside-world

could theore�cally read some about it themselves, but aren’t sure if they are going in the
right direc�on.
A2 can use numpy and pandas, but have learned li�le bits here and there and hasn’t had a
comprehensive introduc�on. They want to ensure they are using best prac�ces. (Baseline
of high-level packages)
B is a mid-to-late undergraduate student who has used Python in some classes. They have
possibly learned the syntax and enough to use it in courses, but in a course-like manner
where they are expected to create everything themselves: they want to know how to
reuse tools that already exist.

Motivation

Why Python

Python has become popular, largely due to good reasons. It’s very easy to get started, there’s
lots of educa�onal material, a huge amount of libraries for doing everything imaginable.
Par�cularly in the scien�fic compu�ng space, there is the Numpy, Scipy, and matplotlib
libraries which form the basis of almost everything. Numpy and Scipy are excellent examples
of using Python as a glue language, meaning to glue together ba�le-tested and well
performing code and present them with an easy to use interface. Also machine learning and
deep learning frameworks have embraced python as the glue language of choice. And finally,
Python is open source, meaning that anybody can download and install it on their computer,
without having to bother with acquiring a license or such. This makes it easier to distribute
your code e.g. to collaborators in different universi�es.

Why not Python for Scientific Computing

While Python is extremely popular in scien�fic compu�ng today, there are certainly things
be�er le� to other tools.

Implemen�ng performance-cri�cal kernels. Python is a very slow language, which o�en
doesn’t ma�er if you can offload the heavy li�ing to fast compiled code, e.g. by using
Numpy array opera�ons. But if what you’re trying to do isn’t vectorizable then you’re out
of luck. An alterna�ve to Python, albeit much less mature and with a smaller ecosystem,
but which provides very fast generated code, is Julia.
Crea�ng libraries that can be called from other languages. In this case you’ll o�en want to
create a library with a C interface, which can then be called from most languages.
Suitable languages for this sort of task, depending on what you are doing, could be Rust,
C, C++, or Fortran.
You really like sta�c typing, or func�onal programming approaches. Haskell might be what
you’re looking for.

Python 2 vs Python 3

Python 3.0 came out in September 2008 and was just slightly different enough that most
code had to be changed, which meant that many projects ignored it for many years. It was
about 3-5 years un�l the differences were reduced enough (and be�er transi�on plans came
out, so that it was reasonable to use a single code for both versions) that it become more and
more adopted in the scien�fic community. Python 2 finally became unsupported in 2020, and
by now Python 3 is the defacto standard.

At this point, all new projects should use Python 3, and exis�ng ac�vely developed projects
should be upgraded to use it. S�ll, you might find some old unmaintained tools that are only
compa�ble with Python 2.

Credits

This course was originally designed by Janne Blomqvist.

In 2020 it was completely redesigned by a team of the following:

Authors: Radovan Bast, Richard Darst, Anne Fouilloux, Thor Wikfeldt, …
Editor:
Testers and advisors: Enrico Glerean

We follow The Carpentries Code of Conduct:
h�ps://docs.carpentries.org/topic_folders/policies/code-of-conduct.html

See also

High Performance Data Analy�cs in Python is a logical follow-up to this lesson that goes
more in-depth to tools of high-performance and large-scale Python.

https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html
https://enccs.github.io/hpda-python/

