@ / Python for Scientific Computing documentation

Python for Scientific Computing

O Attending the course 5-7 November, 2024?

See the course page here and watch at https:/twitch.tv/coderefinery. Whether you are or
aren'’t, the course material is below. Videos will appear in this playlist (Last year’s videos:
playlist).

Python is a modern, object-oriented programming language, which has become popular in
several areas of software development. This course discusses how Python can be utilized in
scientific computing. The course starts by introducing some of the main Python tools for
computing: Jupyter for interactive analysis, NumPy and SciPy for numerical analysis,
Matplotlib for visualization, and so on. In addition, it talks about how python is used: related
scientific libraries, reproducibility, and the broader ecosystem of science in Python, because
your work is more than the raw code you write.

This course (like any course) can'’t teach you Python... it can show your some examples, let
you see how experts do things, and prepare you to learn yourself as you need to.

£} Prerequisites

« Knowing basic Python syntax. We assume that you can do some Python
programming, but not much more that that. We don'’t cover standard Python
programming. Here a short course on basic Python syntax, with further references.

« Watch or read the command line crash course, if you aren’t familiar.

« You should be able to use a text editor to edit files some.

« The software installation described below (basically, anaconda).

These are not prerequisites:

« Any external libraries, e.g. numpy
« Knowing how to make scripts or use Jupyter

© Videos and archived Q&A

Videos and material from past instances:

« 2021: this YouTube playlist.
e 2022: here, Q&A: days 1-2, days 3-4
» 2023:Videos

https://scicomp.aalto.fi/training/scip/python-for-scicomp-2024/
https://twitch.tv/coderefinery
https://www.youtube.com/playlist?list=PLZLVmS9rf3nMWEKWtagJ6h0q9BrFO49tn
https://www.youtube.com/playlist?list=PLZLVmS9rf3nNI3oQEqSJW6yXltOAZnkpa
https://coderefinery.github.io/data-visualization-python/python-basics/
https://scicomp.aalto.fi/scicomp/shell/
https://www.youtube.com/playlist?list=PLZLVmS9rf3nOS7bHNmbcDoyTnMYaz_TJW
https://www.youtube.com/playlist?list=PLZLVmS9rf3nOm3xkYuInBWPUvS93sAUlk
https://hackmd.io/@coderefinery/python2022archive
https://hackmd.io/@coderefinery/python2022archive2
https://www.youtube.com/playlist?list=PLZLVmS9rf3nNI3oQEqSJW6yXltOAZnkpa

« 2024 (Please contact us if you would like to help to process the videos): Videos

(prereq) Introduction to Python
30 min Jupyter

60 min NumPy or Advanced NumPy
60 min Pandas

30 min Xarray

60 min Plotting with Matplotlib
60 min Plotting with Vega-Altair
30 min Working with Data

60 min Scripts

40 min Profiling

20 min Productivity tools

30 min Web APIs with Python

15 min SciPy

30 min Library ecosystem
45 min Parallel programming
45 min Dependency management

30 min Binder

60 min Packaging

Introduction to Python

« What are the basic blocks of Python language?
« How are functions and classes defined in Python?

« Get a very short introduction to Python types and syntax
. Be able to follow the rest of the examples in the course, even if you don’t understand
everything perfectly.

We expect everyone to be able to know the following basic material to follow the course
(though it is not everything you need to know about Python).

https://www.youtube.com/playlist?list=PLZLVmS9rf3nMWEKWtagJ6h0q9BrFO49tn

If you are not familiar with Python, here is a very short introduction. It will not be enough to
do everything in this course, but you will be able to follow along a bit more than you would
otherwise.

= See also

This page contains an overview of the basics of Python. You can also refer to This Python
overview from a different lesson which is slightly more engaging.

Scalars

Scalar types, that is, single elements of various types:

i= 42 # integer

i=2**77 # Integers have arbitrary precision
g =3.14 # floating point number

c =2 -3j # Complex number

b = True # boolean

s = "Hello!" # String (Unicode)

g = b'Hello' # bytes (8-bit values)

Read more: int , float , complex , bool , str , bytes .

Collections

Collections are data structures capable of storing multiple values.

1=1[1, 2, 3] # list

1[1] # lists are indexed by int

1[1] = True # list elements can be any type

d = {"Janne": 123, "Richard": 456} # dictionary

d["Janne"]

s = set(("apple", "cherry", "banana", "apple")) # Set of unique values

S

Read more: 1ist , tuple, dict , set .

Control structures

Python has the usual control structures, that is conditional statements and loops. For
example, the The if statement statement:

https://coderefinery.github.io/data-visualization-python/python-basics/
https://coderefinery.github.io/data-visualization-python/python-basics/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/reference/compound_stmts.html#if

X = 2
if x == 3:
print('x is 3')
elif x == 2:
print('x is 2')
else:
print('x is something else')

While loops loop until some condition is met:

X =0

while x < 42:
print('x is ', x)
X += 0.2

For loops loop over some collection of values:

xs = [1, 2, 3, 4]
for x in xs:
print(x)

Often you want to loop over a sequence of integers, in that case the range functionis

useful:

for x in range(9):
print(x)

Another common need is to iterate over a collection, but at the same time also have an index
number. For this there is the enumerate() function:

xs = [1, 'hello', 'world']
for ii, x in enumerate(xs):
print(ii, x)

Functions and classes

Python functions are defined by the Function definitions keyword. They take a number of
arguments, and return a number of return values.

https://docs.python.org/3/reference/compound_stmts.html#while
https://docs.python.org/3/reference/compound_stmts.html#for
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/reference/compound_stmts.html#def

def hello(name):
"""Say hello to the person given by the argument'"""
print('Hello', name)
return 'Hello ' + name

hello("Anne")

Classes are defined by the Class definitions keyword:

class Hello:
def _ init_ (self, name):
self._name = name
def say(self):
print('Hello', self._name)

h = Hello("Richard")
h.say()

Python type system

Python is strongly and dynamically typed.

Strong here means, roughly, that it’s not possible to circumvent the type system (at least, not

easily, and not without invoking undefined behavior).

X = 42

type(x)
x + "hello"

Dynamic typing means that types are determined at runtime, and a variable can be redefined

to refer to an instance of another type:

42
"hello"

Jargon: Types are associated with rvalues, not Ivalues. In statically typed language, types are

associated with Ivalues, and are (typically) reified during compilation.

??? (lesson here)

O Keypoints

« Python offers a nice set of basic types as many other programming languages

« Python is strongly typed and dynamically typed

https://docs.python.org/3/reference/compound_stmts.html#class

Jupyter

« What is the purpose of a “Computational narrative”?
« What role does Jupyter play in development?
« When is Jupyter not a good tool?

O Objectives

This part will be too easy for some people, and slow for others. Still, we need to take
some time to get everyone on the same page.

« Be able to use Jupyter to run examples for the rest of the course.
« Be able to run Jupyter in a directory do your own work.

« You won't be a Jupyter expert after this, but should be able to do the rest of the
course.

What is Jupyter?

Jupyter is a web-based interactive computing system. It is most well known for having the

notebook file format and Jupyter Notebook / Jupyter Lab. A notebook format contains both
the input and the output of the code along documentation, all interleaved to create what is
called a computational narrative.

Jupyter is good for data exploration and interactive work.

We use Jupyter a lot in this course because it is a good way that everyone can follow along,
and minimizes the differences between operating systems.

Getting started with Jupyter

« Start JupyterLab: there are different ways, depending on how you installed it. See the
installation instructions. If JupyterLab isn’t working yet, you have some time to try to
follow the installation instructions now.

Miniforge Anaconda Other

This is the command line method we went though in our installation instructions.

Linux / MacOS Windows

https://aaltoscicomp.github.io/python-for-scicomp/installation/

$ source ~/miniforge3/bin/activate
$ conda activate python-for-scicomp
$ jupyter-lab

For practical purposes, JupyterLab is an integrated development environment that combines
file browsing, notebooks, and code editing. There are many extensions that let you do
whatever you may need.

Here, we see a tour of the JupyterLab interface:

: File Edit Wiew Run Kernel Tabs Settings Help

= + * & 3 Launcher * | ¥ jupyter.ipynb X
i/ Launcher .
Open notebooks and files

Name -
°'~e,\<=an oy [E] Notebook

unning kernels
AHunning

untitled.txt b

£ [demo-app.

[dependencies.rst

[exercises-1.rst ' B '
- .

[guide.rst

Python 3 Bash Python 2

= (Y homework.rst

[index.rst ‘\

Start new notebook

» ™ installation.rst Consale

™ jupyter.ipynb

[libraries.rst
LICENSE \ P B P
make.bat

Bash

Makefile File browser Python 3

Python 2
ratplotlib.rst
ndarray.dot

O
O
O
O
O
M ndarray.svg Other
(3 numpy.rst
O
O
O
O
O
O

organizing-code.rst
packaging.rst

M
v

pandas.rst . .
Terminal Text File Markdown File
python.rst “
quick-reference.rst
requirements.txt [] New terminal
o B3 & Saving completed Launcher

Exercises 1

¢a Exercises: Jupyter-1

If you aren’t set up with JupyterLab yet or these things don’t work, use this time to see
the installation instructions and ask us any questions you may have.

https://aaltoscicomp.github.io/python-for-scicomp/installation/

1. Start Jupyter in the directory you want to use for this course.
« If you are using Miniforge from the command line, you can navigate with cd toa
directory of your choice.
« If you are starting from the Anaconda Navigator, change to the directory you want
to use.
2. Create a Python 3 notebook file. Save it. In the next section, you will add stuff to it.
3. (optional, but will be done in future lessons) Explore the file browser, try making some
non-notebook text/py/md files and get used to that.
4. (optional, advanced) Look at the notebook file in a text editor. How does it work?

If everything works for you, this will end very quickly. You can begin reading the next
sections independently.

Running code in Jupyter

A notebook is divided into cells. Each cell has some input, and when it is executed an output
appears right below it.

There are different types of cells: primarily code cells and markdown cells. You can switch
between them with the menu bar above. Code cells run whatever language your notebook
uses. Markdown is a lightweight way of giving style to text -you can check out this

reference. For example the previous sentence is:

Markdown is a lightweight way of giving *style* to “text®™ - you
can check out [this reference](https://commonmark.org/help/).

4 Launcher X | M jupyteripynb X % Untitled.ipynt ® | = untitled.txt X
B + X0 [» = ¢ » Markdown v @ git Python:

Markdown cell ‘\ Aestart kemnel Change cell type

Run cell

& Markdown heading

This is a markdown cell with formatied text like #his,
and equa'’™"* .

Code cell
print("Hello, world!"}

Hello, world! —ff—— Code cell output

When using keyboard shortcuts, you can switch between edit mode and command mode
with Enter and Esc .

You enter code in a cell, and push the run button to run it. There are also some important
shortcut keys:

https://commonmark.org/help/
https://commonmark.org/help/

e ctrl-Enter : Run cell

« shift-Enter : Run cell and select cell below

o Alt-Enter : Run cell and insert new cell below
« a / b :insert new cell above/below

« m / y:markdown cell / code cell

o x :cutcell

o c :copycell

o v :pastecell

d, d :delete cell

Now, let’s look at some code samples:

for i in range(3):
print(1i)

[y

print(sum(range(5)))

10

By convention, if the last thing in a cell is an object, that object gets printed:

sum(range(5))
sum(range(10))

In addition to raw cells, there are magics, which exist outside of Python. They are a property
of the runtime itself (in Python’s case, they come from IPython. For example, the following
cell magic %%timeit will use the timeit module to time a cell by running it multiple times):

%%timeit
for x in range(1000000):
X**2

54.1 ms = 993 ps per loop (mean * std. dev. of 7 runs, 10 loops each)

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://docs.python.org/3/library/timeit.html#module-timeit

Another example is %%bash which will turn the cell into a shell script (This will only work on
operating systems with the Bash shell installed - MacOS and Linux at least):

%%bash

for x in $(seq 3) ; do
echo $x

done

« Acell magic starts with %% , goes on the first line of a cell, and applies to the whole cell

« Aline magic starts with % , goes on any line, and applies to that line.

Exercises 2

¢a Exercises: Jupyter-2

1. Run some trivial code, such as print(1) .

2. Run some slightly less trivial code, like print out the first ten Fibonacci numbers.

3. Make a Markdown cell above your code cell and give it a title and some description of
your function. Use the reference to add a heading, bullet list, and some (bold, italic, or
inline code)

4. Use the %%timeit magic function to time your Fibonacci function.

5. Again using %%timeit , figure out the fastest way to sum the numbers O to 1000000.

6. Once you are done, close your notebooks and other tabs you don't need. Check the
running sessions (hint: thin left sidebar) and shut down these kernels.

v Solutions: Jupyter-2

1. -
2. Simple fibonacci code

a, b=o0, 1
for i in range(10):
print(a)

a, b =b, atb

3. Markdown description

https://ipython.readthedocs.io/en/stable/interactive/magics.html#cellmagic-bash
https://en.wikipedia.org/wiki/Fibonacci_number
https://commonmark.org/help/
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

Fibonacci
* Start with two variables "a’ and b~
Repeat 10 times
* Print old "a’, then increment both
* Makes use of the Python *tuple assignment*: “a, b = new_a, new_b’

*

4. In this case, the print() statements get out of hand, so we comment that out. In
general, writing output usually takes a lot of time reletive to the computation, so we
don’t want to time that (unless output is the main point of the code, then we do have
to timeiit!

%%timeit

a, b=20, 1

for i in range(10):
#print(a)
a, b =b, atb

395 ns £ 10.2 ns per loop (mean % std. dev. of 7 runs, 1000000 loops each)

Why Jupyter?

Being able to edit, check, re-edit quickly is great for prototyping and testing new ideas
o Tends to be best either at the very beginning (getting started) or data analysis/plotting
phases.
« You can make a complete story - in one place. No more having code, figures, and
description in different places.
o Instead of sending plots to your advisor, send plots, the text there, and possibility of
checking the code, too.
« Notebook as an interactive publication itself - for example the discovery of gravitational
waves data is released as a notebook.
« Jupyter Notebooks display on Github - low-barrier way to share your analysis.
« Teaching - great for getting difficult software distribution out of the way.

Why not Jupyter?
Jupyter is great for many things, but there are some problems if not used well:

« They don’t promote modularity, and once you get started in a notebook it can be hard to
migrate to modules.

« They are difficult to test. There are things to run notebooks as unit tests like nbval, but
it's not perfect.

https://www.gw-openscience.org/tutorials/
https://nbval.readthedocs.io/

« Notebooks can be version controlled (nbdime helps with that), but there are still
limitations.

« You can change code after you run it and run code out of order. This can make debugging
hard and results irreproducible if you aren’t careful.

« Notebooks aren’t named by default and tend to acquire a bunch of unrelated stuff. Be
careful with organization!

« Once lots of code is in notebooks, it can be hard to change to proper programs that can
be scripted.

You can read more about these downsides https:/scicomp.aalto.fi/scicomp/jupyter-pitfalls/.

But these downsides aren’t specific to Jupyter! They can easily happen in other sources,
too. By studying these, you can make any code better, and find the right balance for what you
do.

Exercises 3

¢a Exercises: Jupyter-3

(optional) Discuss the following in groups:

1. Have any of you used Jupyter in a way that became impossible to maintain: too many
files, code all spread out, not able to find your code and run it in the right order. How
did you solve that?

2. On the other hand, what are your successes with Jupyter?

3. How can you prevent these problems by better development strategies?

See also

« The CodeRefinery Jupyter lesson has much more, and the source of some of the content
above.

O Keypoints

« Jupyter is powerful and can be used for interactive work
« ... but not the end solution when you need to scale up.

NumPy

« Why use NumPy instead of pure python?
« How to use basic NumPy?
« What is vectorization?

https://nbdime.readthedocs.io/
https://scicomp.aalto.fi/scicomp/jupyter-pitfalls/
https://coderefinery.github.io/jupyter/

O Objectives

« Understand the Numpy array object
« Be able to use basic NumPy functionality
« Understand enough of NumPy to seach for answers to the rest of your questions ;)

We expect most people to be able to do all the basic exercises here. It is probably quite
easy for many people; we have advanced exercises at the end in that case.

So, we already know about python lists, and that we can put all kinds of things in there. But
in scientific usage, lists are often not enough. They are slow and not very flexible.

What is an array?

For example, consider [1, 2.5, 'asdf', False, [1.5, True]] - thisis a Python list but it has

different types for every element. When you do math on this, every element has to be
handled separately.

NumPy is the most used library for scientific computing. Even if you are not using it directly,
chances are high that some library uses it in the background. NumPy provides the high-
performance multidimensional array object and tools to use it.

An array is a ‘grid’ of values, with all the same types. It is indexed by tuples of non negative
indices and provides the framework for multiple dimensions. An array has:

« dtype - data type. Arrays always contain one type
« shape - shape of the data, for example 3x2 or 3x2x500 or even 500 (one dimensional)

or [] (zero dimensional).
« data -raw data storage in memory. This can be passed to C or Fortran code for efficient

calculations.
To test the performance of pure Python vs NumPy we can write in our jupyter notebook:

Create one list and one ‘empty’ list, to store the result in

list(range(10000))
[@] * 10000

o
I

In a new cell starting with %»timeit , loop through the list a and fill the second list b with

a squared

https://numpy.org/doc/stable/reference/arrays.dtypes.html#arrays-dtypes
https://numpy.org/doc/stable/glossary.html#term-shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.data.html#numpy.ndarray.data

%%timeit
for i in range(len(a)):
b[i] = a[i]**2

That looks and feels quite fast. But let’s take a look at how NumPy performs for the same

task.

So for the NumPy example, create one array and one ‘empty’ array to store the result in

import numpy as np
a np.arange(10000)
b = np.zeros(10000)

In a new cell starting with %%timeit , fill b with a squared

%%timeit
b =a* 2

We see that compared to working with numpy arrays, working with traditional python lists is
actually slow.

Creating arrays

There are different ways of creating arrays (numpy.array() , numpy.ndarray.shape ,

numpy.ndarray.size X

a = np.array([1,2,3]) # 1-dimensional array (rank 1)
b = np.array([[1,2,3],[4,5,6]]) # 2-dimensional array (rank 2)
b.shape # the shape (rows,columns)
b.size # number of elements

In addition to above ways of creating arrays, there are many other ways of creating arrays
depending on content (numpy.zeros() , numpy.ones() , numpy.full() , numpy.eye() ,

numpy.arange() , numpy.linspace() k

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full
https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace

np.zeros((2, 3))
np.ones((1,2))
np.full((2,2),7)
np.eye(2)

2x3 array with all elements 0
1x2 array with all elements 1
2x2 array with all elements 7
2x2 identity matrix

H R R K

H

np.arange(10) Evenly spaced values in an interval
np.linspace(0,9,10) # same as above, see exercise

O
|

= np.ones((3,3))
np.ones((3, 2), 'bool') # 3x2 boolean array

o
1

Arrays can also be stored and read from a (.npy) file (numpy.save() , numpy.load()):

np.save('x.npy', a) # save the array a to a .npy file
X = np.load('x.npy") # load an array from a .npy file and store it in variable
X

In many occasions (especially when something goes different than expected) it is useful to
check and control the datatype of the array (numpy.ndarray.dtype , numpy.ndarray.astype()):

d.dtype # datatype of the array
d.astype('int") # change datatype from boolean to integer

In the last example, .astype('int') , it will make a copy of the array, and re-allocate data -
unless the dtype is exactly the same as before. Understanding and minimizing copies is one of
the most important things to do for speed.

Exercises 1

ga Exercises: Numpy-1

1. Datatypes Try out np.arange(10) and np.linspace(0,9,10) , what is the difference?

Can you adjust one to do the same as the other?
2. Datatypes Create a 3x2 array of random float numbers (check numpy.random.random())

between 0 and 1. Now change the arrays datatype to int (array.astype). How does

the array look like?
3. Reshape Create a 3x2 array of random integer numbers between 0 and 10. Change the
shape of the array (check array.reshape) in any way possible. What is not possible?

4. NumPyl/O Save above array to .npy file (numpy.save()) and read it in again.

v Solutions: Numpy-1

1. Datatypes

https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dtype.html#numpy.ndarray.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html#numpy.random.random
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save

e np.arange(10) resultsin array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9]) with dtype inté4,
« while np.linspace(0,9,10) results in array([06., 1., 2., 3., 4., 5., 6., 7., 8.,
9.1) with dtype floaté4.

Both np.1linspace and np.arange take dtype as an argument and can be adjusted to
match each other in that way.

2. Datatypes eg a = np.random.random((3,2)) . a.astype('int') resultsin an all zero

array, not as maybe expected the rounded int (all numbers [0, 1) are cast to 0).
3. Reshape €g b = np.random.randint(0,10,(3,2)) .

b.reshape((6,1)) and b.reshape((2,3)) pOSSib|e.

It is not possible to reshape to shapes using more or less elements than b.size = 6,

so for example b.reshape((12,1)) gives an error.

4, NumPyI/O np.save('x.npy', b) and x = np.load('x.npy')

Array maths and vectorization

Clearly, you can do math on arrays. Math in NumPy is very fast because it is implemented in
C or Fortran - just like most other high-level languages such as R, Matlab, etc do.

By default, basic arithmetic(+, -, *, /)in NumPy is element-by-element. That is, the
operation is performed for each element in the array without you having to write a loop. We
say an operation is “vectorized” when the looping over elements is carried out by NumPy
internally, which uses specialized CPU instructions for this that greatly outperform a regular
Python loop.

Note that unlike Matlab, where * means matrix multiplication, NumPy uses * to perform

element-by-element multiplication and uses the @ symbol to perform matrix multiplication:

a = np.array([[1,2],[3,4]])
b = np.array([[5,6],[7,8]])

Addition
c=a+b
d = np.add(a,b)

Matrix multiplication
e=a@b
f = np.dot(a, b)

Other common mathematical operations include: - (numpy.subtract), * (numpy.multiply),

/ (numpy .divide L T (numpy . transpose()), numpy.sqrt , numpy.sum() , numpy.mean() , ...

Exercises 2

ga Exercises: Numpy-2

« Matrix multiplication What is the difference between numpy.multiply and
numpy.dot() ? Tryit.
« Axis What is the difference between np.sum(axis=1) VS np.sum(axis=0) on a two-

dimensional array? What if you leave out the axis parameter?

v Solutions: Numpy-2

« Matrix multiplication np.multiply does elementwise multiplication on two arrays,
while np.dot enables matrix multiplication.
o Axis axis=1 does the operation (here: np.sum) over each row, while axis=0 does it

over each column. If axis is left out, the sum of the full array is given.

Indexing and Slicing

= See also

Numpy basic indexing docs

NumPy has many ways to extract values out of arrays:

« You can select a single element
« You can select rows or columns
« You can select ranges where a condition is true.

Clever and efficient use of these operations is a key to NumPy’s speed: you should try to
cleverly use these selectors (written in C) to extract data to be used with other NumPy
functions written in C or Fortran. This will give you the benefits of Python with most of the
speed of C.

a = np.arange(16).reshape(4, 4) # 4x4 matrix from 0 to 15

a[o] # first row

a[:,0] # first column

a[1:3,1:3] # middle 2x2 array

af(o, 1), (1, 1)] # second element of first and second row as array

Boolean indexing on above created array:

https://numpy.org/doc/stable/reference/generated/numpy.subtract.html#numpy.subtract
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply
https://numpy.org/doc/stable/reference/generated/numpy.divide.html#numpy.divide
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply
https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/user/basics.indexing.html#basics-indexing

idx = (a > 0) # creates boolean matrix of same size as a
a[idx] # array with matching values of above criterion

afa > 0] # same as above in one line

Exercises 3

¢a Exercise: Numpy-3

a = np.eye(4)
b = a[:,0]
b[0] =5

« View vs copy Try out above code. How does a look like before b has changed and

after? How could it be avoided?

v Solution: Numpy-3

« View vs copy The changein b has also changed the array a ! This is because b is
merely a view of a part of array a . Both variables point to the same memory. Hence,

if one is changed, the other one also changes. If you need to keep the original array as
is, use np.copy(a) .

Types of operations

There are different types of standard operations in NumPy:

ufuncs, “universal functions”: These are element-by-element functions with standardized
arguments:

« One, two, or three input arguments

o For example, a + b issimilarto np.add(a, b) butthe ufunc has more control.

« out= output argument, store output in this array (rather than make a new array) - saves
copying data!

« See the full reference

« They also do broadcasting (ref). Can you add a 1-dimensional array of shape (3) to an 2-
dimensional array of shape (3, 2)? With broadcasting you can!

a = np.array([[1, 2, 3],
[4, 5, 6]1)
np.array([10, 10, 10])
a+b # array([[11, 12, 13],
[14, 15, 16]])

(=2
I

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs
https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add
https://numpy.org/doc/stable/reference/ufuncs.html
https://numpy.org/doc/stable/user/basics.broadcasting.html#basics-broadcasting

Broadcasting is smart and consistent about what it does, which I'm not clever enough to
explain quickly here: the manual page on broadcasting. The basic idea is that it expands
dimensions of the smaller array so that they are compatible in shape.

Array methods do something to one array:

« Some of these are the same as ufuncs:

x

= np.arange(12)

x.shape = (3, 4)

array([[6, 1, 2, 3],
[4, 5, 6, 7],
[8 9, 10, 11]])

11

array([8, 9, 10, 11])

array([3, 7, 11])

x.max()
Xx.max(axis=0)
x.max(axis=1)

HoH O K B W

Other functions: there are countless other functions covering linear algebra, scientific
functions, etc.

Exercises 4

za Exercises: Numpy-4

« In-place addition: Create an array, add it to itself using a ufunc.
« In-place addition (advanced): Create an array of dtype='float' , and an array of

dtype='int' . Try to use the int array is the output argument of the first two arrays.
« Output arguments and timing Repeat the initial b = a ** 2 example using the output

arguments and time it. Can you make it even faster using the output argument?

v Solution: Numpy-4

« in-place addition:

X = np.array([1, 2, 3])

id(x) # get the memory-ID of X
np.add(x, X, X) # Third argument is output array
np.add(x, X, X)

print(x)

id(x) # get the memory-ID of x

- notice it 1s the same

You note that np.add() has a third argument that is the output array (same as out=),
and the function returns that same array.

« Output arguments and timing In this case, on my computer, it was actually slower
(this is due to it being such a small array!):

https://numpy.org/doc/stable/user/basics.broadcasting.html

np.arange(10000)
np.zeros(10000)

Q
|

%%timeit
numpy.square(a, out=b)

This is a good example of why you always need to time things before deciding what is
best.

Linear algebra and other advanced math

In general, you use arrays (n-dimensions), not matrixes (specialized 2-dimensional) in

NumPy.

Internally, NumPy doesn’t invent its own math routines: it relies on BLAS and LAPACK to do
this kind of math - the same as many other languages.

« Linear algebra in numpy

« Many, many other array functions

« Scipy has even more functions

« Many other libraries use NumPy arrays as the standard data structure: they take data in
this format, and return it similarly. Thus, all the other packages you may want to use are
compatible

« If you need to write your own fast code in C, NumPy arrays can be used to pass data. This
is known as extending Python.

Additional exercises

& Numpy-5

If you have extra time, try these out. These are advanced and optional, and will not be
done in most courses.

1. Reverse a vector. Given a vector, reverse it such that the last element becomes the
first,e.g. [1, 2, 3] => [3, 2, 1]

2. Create a 2D array with zeros on the borders and 1 inside.

3. Create a random array with elements [0, 1), then add 10 to all elements in the range
[0.2,0.7).

4. What is np.round(e.5) ? Whatis np.round(1.5) ? Why?

5. In addition to np.round ,explore numpy.ceil , numpy.floor , numpy.trunc . In

particular, take note of how they behave with negative numbers.

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
https://numpy.org/doc/stable/reference/routines.linalg.html
https://numpy.org/doc/stable/reference/routines.html
https://docs.scipy.org/doc/scipy/reference/
https://docs.python.org/3/extending/
https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil
https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor
https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc

6. Recall the identity \(\sin*2(x) + \cos”2(x) = 1\). Create a random 4x4 array with values
in the range [0, 10). Now test the equality with numpy.equal . What result do you get
with numpy.allclose() instead of np.equal ?

7. Create a 1D array with 10 random elements. Sort it.

8. What's the difference between np_array.sort() and np.sort(np_array) ?

9. For the random array in question 8, instead of sorting it, perform an indirect sort. That
is, return the list of indices which would index the array in sorted order.

10. Create a 4x4 array of zeros, and another 4x4 array of ones. Next combine them into a
single 8x4 array with the content of the zeros array on top and the ones on the
bottom. Finally, do the same, but create a 4x8 array with the zeros on the left and the
ones on the right.

11. NumPy functionality Create two 2D arrays and do matrix multiplication first manually
(for loop), then using the np.dot function. Use %%timeit to compare execution times.
What is happening?

v Solution Numpy-5

1. One solution is:
a = np.array([1, 2, 3])
al::-1]

2. One solution is:

b = np.ones((10,10))
b[:l [ol '1]]:O
b[[ol '1]l :]:0

3. A possible solution is:

np.random.rand(100)
X + 10*(x >= 0.2)*(x < 0.7)

<
I

4. For values exactly halfway between rounded decimal values, NumPy rounds to the
nearest even value.
5. Let’s test those functions with few negative and positive values:

a = np.array([-3.3, -2.5, -1.5, -0.75, -0.5, 0.5, 0.75, 1.5, 2.5, 3])
np.round(a) # [-3. -2. -2. -1. -0. 0. 1. 2. 2. 3.]
np.ceil(a) # [-3. -2. -1. -0. -0. 1. 1. 2. 3. 3.]
np.floor(a) # [-4. -3. -2. -1. -1. 0. 0. 1. 2. 3.]
np.trunc(a) # [-3. -2. -1. -0. -0. 0. 0. 1. 2. 3.]

https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal
https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort
https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort

6. One solution is:

X = 10*np.random.rand(4,4)

00 = np.ones((4,4))

s2c2 = np.square(np.sin(x))+np.square(np.cos(x))
np.equal(oo,s2c2)

np.allclose(00,s2c2)

7. Sorting the array itself, without copying it:

X = np.random.rand(10)
x.sort()

8. NumPy.sort() returns a sorted copy of an array.
9. np.argsort(x)
10. One solution is:

z np.zeros((4,4))

o] np.ones((4,4))
np.concatenate((z,0))
np.concatenate((z,0),axis=1)

11. Using numpy without numpy functionality (np.dot) in this case, is still slow.

See also

o NumPy manual
o Basic array class reference
o Indexing
o ufuncs
« 2020 Nature paper on NumPy’s role and basic concepts

O Keypoints

« NumPy is a powerful library every scientist using python should know about, since
many other libraries also use it internally.
« Be aware of some NumPy specific peculiarities

Advanced NumPy

Questions

« How can NumPy be so fast?
« Why are some things fast and some things slow?

https://numpy.org/doc/stable/reference/
https://numpy.org/doc/stable/reference/arrays.html
https://numpy.org/doc/stable/reference/arrays.indexing.html
https://numpy.org/doc/stable/reference/ufuncs.html
https://www.nature.com/articles/s41586-020-2649-2

« How can | control whether NumPy makes a copy or operates in-place?

« Understand why NumPy has so many specialized functions for specific operations
« Understand the underlying machinery of the Numpy ndarray object

« Understand when and why NumPy makes a copy of the data rather than a view

This is intended as a follow-up to the basic NumPy lesson. The intended audience for this
advanced lesson is those who have used NumPy before and now want to learn how to
get the most out of this amazing package.

Python, being an interpreted programming language, is quite slow. Manipulating large
amounts of numbers using Python’s build-in lists would be impractically slow for any serious
data analysis. Yet, the NumPy package can be really fast. How does it do that? We will dive
into how NumPy works behind the scenes and use this knowledge to our advantage. This
lesson also serves as an introduction to reading the definitive work on this topic: Guide to
NumPy by Travis E. Oliphant, its initial creator.

NumPy can be really fast

Python, being an interpreted programming language, is quite slow. Manipulating large
amounts of numbers using Python’s build-in lists would be impractically slow for any serious
data analysis. Yet, the numpy package can be really fast.

How fast can NumPy be? Let’s race NumPy against C. The contest will be to sum together
100 000 000 random numbers. We will give the C version below, you get to write the NumPy
version:

#include <stdlib.h>
#include <stdio.h>
#define N_ELEMENTS 100000000
int main(int argc, char** argv) {
double* a = (double*) malloc(sizeof(double) * N_ELEMENTS);
int 1i;
for(i=0; i<N_ELEMENTS; ++i) {
a[i] = (double) rand() / RAND_MAX;
}
double sum = 0;
for(i=0; i<N_ELEMENTS; ++i) {
sum += a[i];
}
printf("%f", sum);
return 0;

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
http://web.mit.edu/dvp/Public/numpybook.pdf
http://web.mit.edu/dvp/Public/numpybook.pdf

Exercise 1

¢a Exercises: Numpy-Advanced-1

Write a Python script that uses NumPy to generate 100 million (100000000) random
numbers and add them all together. Time how long it takes to execute. Can you beat the
C version?

If you are having trouble with this, we recommend completing the basic NumPy lesson
before continuing with this advanced lesson. If you are taking a live course - don’t worry,
watch and learn and explore some during the exercises!

v Solutions: Numpy-Advanced-1

The script can be implemented like this:

import numpy as np
print(np.random.rand(100_000_000).sum())

The libraries behind the curtain: MKL and BLAS

NumPy is fast because it outsources most of its heavy lifting to heavily optimized math
libraries, such as Intel’s Math Kernel Library (MKL), which are in turn derived from a Fortran
library called Basic Linear Algebra Subprograms (BLAS). BLAS for Fortran was published in
1979 and is a collection of algorithms for common mathematical operations that are
performed on arrays of numbers. Algorithms such as matrix multiplication, computing the
vector length, etc. The API of the BLAS library was later standardized, and today there are
many modern implementations available. These libraries represent over 40 years of
optimizing efforts and make use of specialized CPU instructions for manipulating arrays. In
other words, they are fast.

One of the functions inside the BLAS library is a function to compute the “norm” of a vector,
which is the same as computing its length, using the Pythagorean theorem: \(\sqrt(a[0]*2 +
a[1]*2 + \ldots)\).

Let’s race the BLAS function versus a naive “manual” version of computing the vector norm.
We start by creating a decently long vector filled with random numbers:

import numpy as np
rng = np.random.default_rng(seed=0)
a = rng.random(100_000_000)

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://www.youtube.com/watch?v=Pc8DfEyAxzg&list=PLzLzYGEbdY5lrUYSssHfk5ahwZERojgid
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/blas-routines/blas-level-1-routines-and-functions/cblas-nrm2.html#cblas-nrm2
https://en.wikipedia.org/wiki/Pythagorean_theorem

We now implement the Pythagorean theorem using basic NumPy functionality and use
%wtimeit to record how long it takes to execute:

%%timeit
1 = np.sqgrt(np.sum(a ** 2))
print(1l)

And here is the version using the specialized BLAS function norm() :

%%timeit
1 = np.linalg.norm(a)
print(1l)

NumPy tries to avoid copying data

Understanding the kind of operations that are expensive (take a long time) and which ones
are cheap can be surprisingly hard when it comes to NumPy. A big part of data processing
speed is memory management. Copying big arrays takes time, so the less of that we do, the
faster our code runs. The rules of when NumPy copies data are not trivial and it is worth
your while to take a closer look at them. This involves developing an understanding of how
NumPy’s numpy.ndarray datastructure works behind the scenes.

An example: matrix transpose

Transposing a matrix means that all rows become columns and all columns become rows. All
off-diagonal values change places. Let’s see how long NumPy’s transpose function takes, by
transposing a huge (10 000 X 20 000) rand() matrix:

import numpy as np
a = np.random.rand(10_000, 20_000)
print(f'Matrix “a’ takes up {a.nbytes / 10**6} MB')

Let’s time the transpose() method:

%%timeit
b = a.transpose()

It takes mere nanoseconds to transpose 1600 MB of data! How?

The ndarray exposed

https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html#numpy.random.rand
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose

The first thing you need to know about numpy.ndarray is that the memory backing it up is

always a flat 1D array. For example, a 2D matrix is stored with all the rows concatenated as a
single long vector.

How you see a matrix: How NumPy sees a matrix:

(0] [11 [2] [3] [4] (5] [6] [7] [8] [9] [10][11][12][13][14][15]

(0] [,1] [,2] ;3]

NumPy is faking the second dimension behind the scenes! When we request the element at
say, [2, 3] , NumPy converts this to the correct index in the long 1D array [11] .

« Converting [2, 3] — [11] is called “raveling”

« Thereverse, converting [11] — [2, 3] is called “unraveling”

The implications of this are many, so take let’s take some time to understand it properly by
writing our own ravel() function.

Exercise 2

¢a Exercises: Numpy-Advanced-2

Write a function called rave1l() that takes the row and column of an element in a 2D

matrix and produces the appropriate index in an 1D array, where all the rows are
concatenated. See the image above to remind yourself how each row of the 2D matrix
ends up in the 1D array.

The function takes these inputs:

« row Therow of the requested element in the matrix as integer index.
o col Thecolumn of the requested element in the matrix as integer index.
« n_rows The total number of rows of the matrix.

e n_cols The total number of columns of the matrix.

Here are some examples of input and desired output:

e ravel(2, 3, n_rows=4, n_cols=4) —> 11
e ravel(2, 3, n_rows=4, n_cols=8) —> 19
e ravel(®, 0, n_rows=1, n_cols=1) —> 0

e ravel(3, 3, n_rows=4, n_cols=4) —> 15

e ravel(3_465, 18923, n_rows=10_000, n_cols=20_000) —> 69_318 923

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

v Solutions: Numpy-Advanced-2

The function can be implemented like this:

def ravel(row, col, n_rows, n_cols):
return row * n_cols + col

Strides

As seen in the exercise, to get to the next row, we have to skip over n_cols indices. To get to

the next column, we can just add 1. To generalize this code to work with an arbitrary number
of dimensions, NumPy has the concept of “strides”:

np.zeros((4, 8)).strides # (64, 8)
np.zeros((4, 5, 6, 7, 8)).strides # (13440, 2688, 448, 64, 8)

The strides attribute contains for each dimension, the number of bytes (not array indexes)
we have to skip over to get to the next element along that dimension. For example, the result
above tells us that to get to the next row in a 4 X 8 matrix, we have to skip ahead 64 bytes.
647? Yes! We have created a matrix consisting of double-precision floating point numbers.
Each one of those bad boys takes up 8 bytes, so all the indices are multiplied by 8 to get to
the proper byte in the memory array. To move to the next column in the matrix, we skip
ahead 8 bytes.

So now we know the mystery behind the speed of transpose() . NumPy can avoid copying

any data by just modifying the strides of the array:

import numpy as np

a
b

np.random.rand(10_000, 20 000)
a.transpose()

print(a.strides) # (160000, 8)
print(b.strides) # (8, 160000)

Another example: reshaping

Modifying the shape of an array through numpy.reshape() is also accomplished without any

copying of data by modifying the strides :

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides

a = np.random.rand(20_000, 10 _000)
print(f'{a.strides=}') # (80000, 8)

b = a.reshape(40_000, 5_000)
print(f'{b.strides=}') # (40000, 8)

c = a.reshape(20_000, 5 000, 2)
print(f'{c.strides=}"') # (80000, 16, 8)

Exercises 3

ga Exercises: Numpy-Advanced-3

A little known feature of NumPy is the numpy.stride_tricks module that allows you to
modify the strides attribute directly. Playing around with this is very educational.

1. Create your own transpose() function that will transpose a 2D matrix by reversing
its shape and strides attributes using numpy.lib.stride_tricks.as_strided() .

2. Create a (5 X 100 000 000 000) array containing on the first row all 1's, the second
row all 2's, and so on. Start with an 1D array a = np.array([1., 2., 3., 4., 5.]) and

modify its shape and strides attributes using

numpy.lib.stride_tricks.as_strided() to obtain the desired 2D matrix:

array([[1., 1., 1., , 1., 1., 1.7,
[2., 2., 2., , 2., 2., 2.1,
B, 8oy Boy 7 Bop Bop Ballp
[4., 4., 4., ..., 4., 4., 4.],
[5., 5., 5., , 5., 5., 5.11)

v Solutions: Numpy-Advanced-3

1. The transpose() function can be implemented like this:

from numpy.lib.stride_tricks import as_strided
def transpose(a):
return as_strided(a, shape=a.shape[::-1], strides=a.strides[::-1])

Testing the function on a small matrix
a = np.array([[1, 2, 3],

[4, 5, 6]1])
print('Before transpose:')
print(a)
print('After transpose:')
print(transpose(a))

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided
https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided

2. By setting one of the .strides to 0, we can repeat a value infinitely many times

without using any additional memory:

from numpy.lib.stride_tricks import as_strided
a = np.array([1., 2., 3., 4., 5.1)
as_strided(a, shape=(5, 100_000_000_000), strides=(8, 0))

A fast thing + a fast thing = a fast thing?

If numpy.transpose() is fast, and numpy.reshape() is fast, then doing them both must be fast
too, right?:

Create a large array
a = np.random.rand(10_000, 20 000)

Measuring the time it takes to first transpose and then reshape:

%%timeit -n 1 -r 1
a.T.reshape(40_000, 5_000)

In this case, the data actually had to be copied and it’s super slow (it takes seconds instead of
nanoseconds). When the array is first created, it is laid out in memory row-by-row (see image
above). The transpose left the data laid out in memory column-by-column. To see why the
copying of data was inevitable, look at what happens to this smaller (2 X 3) matrix after
transposition and reshaping. You can verify for yourself there is no way to get the final array
based on the first array and some clever setting of the strides :

a = np.array([[1, 2, 3], [4, 5, 6]])

print('Original array:')
print(a)

print('\nTransposed:"')
print(a.T)

print('\nTransposed and then reshaped:"')
print(a.T.reshape(2, 3))

https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides

Copy versus view

Whenever NumPy constructs a new array by modifying the strides instead of copying data,

we way it created a “view”. This also happens when we select only a portion of an existing
matrix. Whenever a view is created, the numpy.ndarray object will have a reference to the

original array in its base attribute:

a = np.zeros((5, 5))
print(a.base) # None

b =a[:2, :2]
print(b.base.shape) # (5, 5)

When you create a large array and select only a portion of it, the large array will stay in
memory if a view was created!

The new array b object has a pointer to the same memory buffer as the array it has been

derived from:

print(a.__array_interface_ ['data'])
print(b.__array_interface__['data'])

Views are created by virtue of modifying the value of the shape attribute and, if necessary,

apply an offset to the pointer into the memory buffer so it no longer points to the start of the
buffer, but somewhere in the middle:

b = a[1:3, 1:3] # This view does not start at the beginning
offset = b.__array_interface_ ['data'][0] - a.__array_interface__ ['data'][0]
print('Offset:', offset, 'bytes') # Offset: 48 bytes

memory buffer

\lata pointer / data pointer

maon

array "a array "b"

.shape .shape
.strides .strides

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.base.html#numpy.ndarray.base
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape

Since the base array and its derived view share the same memory, any changes to the data in
a view also affects the data in the base array:

b[o, 0] = 1.
print(a) # Original matrix was modified

Whenever you index an array, NumPy will attempt to create a view. Whether or not that
succeeds depends on the memory layout of the array and what kind of indexing operation
was done. If no view can be created, NumPy will create a new array and copy over the
selected data:

c = a[[0, 2]] # Select rows 0 and 2
print(c.base) # None. So not a view.

See also

« Guide to Numpy
o NumPy manual
o Basic array class reference
o Indexing
o ufuncs
o Advanced NumPy: Master stride tricks with 25 illustrated exercises

O Keypoints

« The best way to make your code more efficient is to learn more about the NumPy API
and use specialized functions whenever possible.

« NumPy will avoid copying data whenever it can. Whether it can depends on what kind
of layout the data is currently in.

Pandas

Questions

« How do | learn a new Python package?
« How can | use pandas dataframes in my research?

O Objectives

« Learn simple and some more advanced usage of pandas dataframes
» Get a feeling for when pandas is useful and know where to find more information
« Understand enough of pandas to be able to read its documentation.

http://web.mit.edu/dvp/Public/numpybook.pdf
https://numpy.org/doc/stable/reference/
https://numpy.org/doc/stable/reference/arrays.html
https://numpy.org/doc/stable/reference/arrays.indexing.html
https://numpy.org/doc/stable/reference/ufuncs.html
https://towardsdatascience.com/advanced-numpy-master-stride-tricks-with-25-illustrated-exercises-923a9393ab20

Pandas is a Python package that provides high-performance and easy to use data structures
and data analysis tools. This page provides a brief overview of pandas, but the open source
community developing the pandas package has also created excellent documentation and
training material, including:

A Getting started guide (including tutorials and a 10 minute flash intro)

« A“10 minutes to Pandas” tutorial

Thorough Documentation containing a user guide, APl reference and contribution guide
« Acheatsheet

A cookbook

A quick Pandas preview

Run code

Let’s get a flavor of what we can do with pandas (you won't be able to follow everything yet).
We will be working with an example dataset containing the passenger list from the Titanic,
which is often used in Kaggle competitions and data science tutorials. First step is to load
pandas:

import pandas as pd

We can download the data from this GitHub repository by visiting the page and saving it to
disk, or by directly reading into a pataFrame :

url = "https://raw.githubusercontent.com/pandas-dev/pandas/master/doc/data/titanic.csv"
titanic = pd.read_csv(url, index_col='Name')

We can now view the dataframe to get an idea of what it contains and print some summary
statistics of its numerical data:

print the first 5 lines of the dataframe
titanic.head()

print summary statistics for each column
titanic.describe()

Ok, so we have information on passenger names, survival (O or 1), age, ticket fare, number of
siblings/spouses, etc. With the summary statistics we see that the average age is 29.7 years,
maximum ticket price is 512 USD, 38% of passengers survived, etc.

https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/docs/user_guide/10min.html#min
https://pandas.pydata.org/docs/
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/docs/user_guide/cookbook.html#cookbook
https://raw.githubusercontent.com/pandas-dev/pandas/master/doc/data/titanic.csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Let’s say we're interested in the survival probability of different age groups. With two one-
liners, we can find the average age of those who survived or didn’t survive, and plot
corresponding histograms of the age distribution (pandas.pataFrame.groupby() ,

pandas.DataFrame.hist () ﬁ

print(titanic.groupby("Survived")["Age"].mean())

titanic.hist(column='Age', by='Survived', bins=25, figsize=(8,10),
layout=(2,1), zorder=2, sharex=True, rwidth=0.9);

Clearly, pandas dataframes allows us to do advanced analysis with very few commands, but
it takes a while to get used to how dataframes work so let’s get back to basics.

O Getting help

Series and DataFrames have a lot functionality, but how can we find out what methods
are available and how they work? One way is to visit the API reference and reading

through the list. Another way is to use the autocompletion feature in Jupyter and type
e.g. titanic["Age"]. in a notebook and then hit TAB twice - this should open up a list

menu of available methods and attributes.

Jupyter also offers quick access to help pages (docstrings) which can be more efficient
than searching the internet. Two ways exist:

« Write a function name followed by question mark and execute the cell, e.g. write
titanic.hist? and hit SHIFT + ENTER .

o Write the function name and hit sHIFT + TAB .

« Right click and select “Show contextual help”. This tab will update with help for
anything you click.

What's in a dataframe?

As we saw above, pandas dataframes are a powerful tool for working with tabular data. A
pandas pandas.DataFrame is composed of rows and columns:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist
https://pandas.pydata.org/docs/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

DataFrame

row

column

Each column of a dataframe is a pandas.series object - a dataframe is thus a collection of

series:

print some information about the columns
titanic.info()

Unlike a NumPy array, a dataframe can combine multiple data types, such as numbers and
text, but the data in each column is of the same type. So we say a column is of type int64 or

of type object .

Let’s inspect one column of the Titanic passenger list data (first downloading and reading the
titanic.csv datafile into a dataframe if needed, see above):

titanic["Age"]
titanic.Age # same as above

type(titanic["Age"]) # a pandas Series object

The columns have names. Here's how to get them (columns):

titanic.columns

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.columns.html#pandas.DataFrame.columns

However, the rows also have names! This is what Pandas calls the index :

titanic.index

We saw above how to select a single column, but there are many ways of selecting (and
setting) single or multiple rows, columns and values. We can refer to columns and rows either
by their name (1oc , at) or by their index (iloc , iat):

titanic.loc['Lam, Mr. Ali', "Age"] # select single value by row and column
titanic.loc[:'Lam, Mr. Ali',6 "Survived":"Age"] # slice the dataframe by row and column
names

titanic.iloc[0:2,3:6] # same slice as above by row and column
numbers

titanic.at['Lam, Mr. Ali',6 "Age"] = 42 # set single value by row and column *name*
(fast)

titanic.at['Lam, Mr. Ali', "Age"] # select single value by row and column
name (fast)

titanic.iat[0,5] # select same value by row and column

number (fast)

titanic["is_passenger"] = True # set a whole column

Dataframes also support boolean indexing, just like we saw for numpy arrays:

titanic[titanic["Age"] > 70]
".str" creates a string object from a column
titanic[titanic.index.str.contains("Margaret")]

What if your dataset has missing data? Pandas uses the value numpy.nan to represent
missing data, and by default does not include it in any computations. We can find missing
values, drop them from our dataframe, replace them with any value we like or do forward or
backward filling:

titanic.isna() # returns boolean mask of NaN values
titanic.dropna() # drop missing values
titanic.dropna(how="any") # or how="all"
titanic.dropna(subset=["Cabin"]) # only drop NaNs from one column
titanic.fillna(0) # replace NaNs with zero
titanic.fillna(method="'ffill") # forward-fill NaNs

Exercises 1

a Exploring dataframes

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html#pandas.DataFrame.index
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html#pandas.DataFrame.loc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.at.html#pandas.DataFrame.at
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html#pandas.DataFrame.iloc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iat.html#pandas.DataFrame.iat
https://numpy.org/doc/stable/reference/constants.html#numpy.nan

Have a look at the available methods and attributes using the API reference or the
autocomplete feature in Jupyter.

« Try out a few methods using the Titanic dataset and have a look at the docstrings
(help pages) of methods that pique your interest

Compute the mean age of the first 10 passengers by slicing and the

pandas.DataFrame.mean() method
(Advanced) Using boolean indexing, compute the survival rate (mean of “Survived”
values) among passengers over and under the average age.

« Mean age of the first 10 passengers:

titanic.iloc[:10, :]["Age"] .mean()

or:

titanic.loc[:"Nasser, Mrs. Nicholas (Adele Achem)", "Age"].mean()

or:

titanic.iloc[:10,4] .mean()

« Survival rate among passengers over and under average age:

titanic[titanic["Age"] > titanic["Age"].mean()]["Survived"].mean()

and:

titanic[titanic["Age"] < titanic["Age"].mean()]["Survived"].mean()

Tidy data

The above analysis was rather straightforward thanks to the fact that the dataset is tidy.

https://pandas.pydata.org/docs/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html#pandas.DataFrame.mean

In a tidy '
data set: '

Each variable is saved Each observation is
in its own column saved in its own row

In short, columns should be variables and rows should be measurements, and adding
measurements (rows) should then not require any changes to code that reads the data.

What would untidy data look like? Here's an example from some run time statistics from a
1500 m running event:

runners = pd.DataFrame([
{'Runner': 'Runner 1', 400: 64, 800: 128, 1200: 192, 1500: 240},
{'Runner': 'Runner 2', 400: 80, 800: 160, 1200: 240, 1500: 300},
{'Runner': 'Runner 3', 400: 96, 800: 192, 1200: 288, 1500: 360},

1

What makes this data untidy is that the column names 400, 800, 1200, 1500 indicate the
distance ran. In a tidy dataset, this distance would be a variable on its own, making each
runner-distance pair a separate observation and hence a separate row.

To make untidy data tidy, a common operation is to “melt” it, which is to convert it from wide

form to a long form:

runners = pd.melt(runners, id_vars="Runner",
value_vars=[400, 800, 1200, 1500],
var_name="distance",
value_name="time"

In this form it's easier to filter, group, join and aggregate the data, and it’s also easier to
model relationships between variables.

The opposite of melting is to pivot data, which can be useful to view data in different ways as

we'll see below.

For a detailed exposition of data tidying, have a look at this article.

http://vita.had.co.nz/papers/tidy-data.pdf

Working with dataframes

We saw above how we can read in data into a dataframe using the read_csv() function.
Pandas also understands multiple other formats, for example using read_excel , read_hdf ,
read_json , etc. (and corresponding methods to write to file: to_csv, to_excel , to_hdf ,

to_json , etc.)

But sometimes you would want to create a dataframe from scratch. Also this can be done in
multiple ways, for example starting with a numpy array (see patarrame docs):

import numpy as np

dates = pd.date_range('20130101', periods=6)

df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df

or a dictionary (see same docs):

df = pd.DataFrame({'A': ['dog', 'cat', 'dog', 'cat', 'dog', 'cat', 'dog', 'dog'],
'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
'C': np.array([3] * 8, dtype='int32'"),
'D': np.random.randn(8),
'"E': np.random.randn(8)})

df

There are many ways to operate on dataframes. Let’s look at a few examples in order to get a
feeling of what’s possible and what the use cases can be.

We can easily split and concatenate dataframes:

subl, sub2, sub3 = df[:2], df[2:4], df[4:]
pd.concat([subl, sub2, sub3])

When pulling data from multiple dataframes, a powerful pandas.pataFrame.merge method is

available that acts similarly to merging in SQL. Say we have a dataframe containing the age of
some athletes:

age = pd.DataFrame([
{"Runner": "Runner 4", "Age": 18},
{"Runner": "Runner 2", "Age": 21},
{"Runner": "Runner 1", "Age": 23},
unner": unner , e": ,
IIR n IIR 3" IlAg n 19

1

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html#pandas.read_excel
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html#pandas.read_hdf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html#pandas.DataFrame.to_excel
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_hdf.html#pandas.DataFrame.to_hdf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html#pandas.DataFrame.merge

We now want to use this table to annotate the original runners table from before with their
age. Note that the runners and age dataframes have a different ordering to it, and age has
an entry for pave which is not present in the runners table. We can let Pandas deal with all

of it using the merge method:

Add the age for each runner
runners.merge(age, on="Runner'")

In fact, much of what can be done in SQL is also possible with pandas.

groupby is a powerful method which splits a dataframe and aggregates data in groups. To

see what’s possible, let’s return to the Titanic dataset. Let’s test the old saying “Women and
children first”. We start by creating a new column child to indicate whether a passenger

was a child or not, based on the existing Age column. For this example, let’s assume that you

are a child when you are younger than 12 years:

titanic["Child"] = titanic["Age"] < 12

Now we can test the saying by grouping the data on sex and then creating further sub-

groups based on child :

titanic.groupby(["Sex", "Child"])["Survived"].mean()

Here we chose to summarize the data by its mean, but many other common statistical
functions are available as dataframe methods, like std , min, max , cumsum , median , skew ,

var etc.

Exercises 2

g Analyze the Titanic passenger list dataset

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html#pandas.DataFrame.merge
https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.std.html#pandas.DataFrame.std
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.min.html#pandas.DataFrame.min
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.max.html#pandas.DataFrame.max
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.cumsum.html#pandas.DataFrame.cumsum
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.median.html#pandas.DataFrame.median
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.skew.html#pandas.DataFrame.skew
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.var.html#pandas.DataFrame.var

In the Titanic passenger list dataset, investigate the family size of the passengers (i.e.
the “SibSp” column).

« What different family sizes exist in the passenger list? Hint: try the unique()
method

« What are the names of the people in the largest family group?

« (Advanced) Create histograms showing the distribution of family sizes for
passengers split by the fare, i.e. one group of high-fare passengers (where the fare
is above average) and one for low-fare passengers (Hint: instead of an existing
column name, you can give a lambda function as a parameter to hist() to

compute a value on the fly. For example 1lambda x: "Poor" if df["Fare"].loc[x] <

df["Fare"].mean() else "Rich")

 Existing family sizes:

titanic["SibSp"].unique()

« We get 8 from above. There is no name column, since we made name theindex
when we loaded the dataframe with read_csv , SO we use pandas.DataFrame.index

to get the names. So, names of members of largest family(ies):

titanic[titanic["SibSp"] == 8].index

« Histogram of family size based on fare class:

titanic.hist("SibSp",

lambda x: "Poor" if titanic["Fare"].loc[x] <
titanic["Fare"].mean() else "Rich",

rwidth=0.9)

Time series superpowers

An introduction of pandas wouldn’t be complete without mention of its special abilities to
handle time series. To show just a few examples, we will use a new dataset of Nobel prize
laureates available through an API of the Nobel prize organisation at
https:/api.nobelprize.org/v1/laureate.csv .

Unfortunately this APl does not allow “non-browser requests”, so pandas.read_csv will not

work directly on it. Instead, we put a local copy on Github which we can access (the original
data is CC-0, so we are allowed to do this). (Aside: if you do JupyterLab — File = Open from

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.unique.html#pandas.Series.unique
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html#pandas.DataFrame.index
https://api.nobelprize.org/v1/laureate.csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv

URL — paste the URL above, it will open it in JupyterLab and download a copy for your use.)

We can then load and explore the data:

nobel = pd.read_csv("https://github.com/AaltoSciComp/python-for-
scicomp/raw/master/resources/data/laureate.csv")
nobel.head()

This dataset has three columns for time, “born”/"died” and “year”. These are represented as
strings and integers, respectively, and need to be converted to datetime format.
pandas.to_datetime() makes this easy:

the errors='coerce' argument is needed because the dataset is a bit messy
nobel["born"] = pd.to_datetime(nobel["born"], errors ='coerce')
nobel["died"] = pd.to_datetime(nobel["died"], errors ='coerce')
nobel["year"] = pd.to_datetime(nobel["year"], format="%Y")

Pandas knows a lot about dates (using .dt accessor):

print(nobel["born"].dt.day)
print(nobel["born"].dt.year)
print(nobel["born"].dt.weekday)

We can add a column containing the (approximate) lifespan in years rounded to one decimal:

nobel["lifespan"] = round((nobel["died"] - nobel["born"]).dt.days / 365, 1)

and then plot a histogram of lifespans:

nobel.hist(column="1lifespan', bins=25, figsize=(8,10), rwidth=0.9)

Finally, let's see one more example of an informative plot (boxplot()) produced by a single
line of code:

nobel.boxplot(column="1ifespan", by="category")

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#dt-accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html#pandas.DataFrame.boxplot

Exercises 3

g Analyze the Nobel prize dataset

« What country has received the largest number of Nobel prizes, and how many?
How many countries are represented in the dataset? Hint: use the describe

method on the borncountrycode column.

« Create a histogram of the age when the laureates received their Nobel prizes. Hint:
follow the above steps we performed for the lifespan.
« List all the Nobel laureates from your country.

Now more advanced steps:

« Now define an array of 4 countries of your choice and extract only laureates from
these countries (you need to look at the data and find how countries are written,
and replace country with those strings):

countries = np.array([COUNTRY1, COUNTRY2, COUNTRY3, COUNTRY4])
subset = nobel.loc[nobel['bornCountry'].isin(countries)]

« Use groupby() to compute how many nobel prizes each country received in each
category. The size() method tells us how many rows, hence nobel prizes, are in

each group:

nobel.groupby(['bornCountry', 'category']).size()

« (Optional) Create a pivot table to view a spreadsheet like structure, and view it

o First add a column “number” to the nobel dataframe containing 1's (to
enable the counting below). We need to make a copy of subset , because

right now it is only a view:
subset = subset.copy()
subset.loc[:, 'number'] =1
o Then create the pivot_table() :
table = subset.pivot_table(values="number", index="bornCountry",

columns="category", aggfunc=np.sum)

« (Optional) Install the seaborn visualization library if you don't already have it, and
create a heatmap of your table:

import seaborn as sns
sns.heatmap(table, linewidths=.5);

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.describe.html#pandas.Series.describe
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot_table.html#pandas.DataFrame.pivot_table

« Play around with other nice looking plots:

sns.violinplot(y=subset["year"].dt.year, x="bornCountry", inner="stick",
data=subset);

sns.swarmplot(y="year", x="bornCountry'", data=subset, alpha=.5);

subset_physchem = nobel.loc[nobel['bornCountry'].isin(countries) &
(nobel['category'].isin(['physics']) |
nobel['category'].isin(['chemistry']))]

sns.catplot(x="bornCountry", y="year", col="category", data=subset_physchem,
kind="swarm");

sns.catplot(x="bornCountry", col="category", data=subset_physchem,
kind="count");

Below is solutions for the basic steps, advanced steps are inline above.

We use the describe() method:

nobel.bornCountryCode.describe()

count 956
unique 81
top us
freq 287

We see that the US has received the largest number of Nobel prizes, and 81 countries
are represented.

To calculate the age at which laureates receive their prize, we need to ensure that the
“year” and “born” columns are in datetime format:

nobel["born"] pd.to_datetime(nobel["born"], errors ='coerce')
nobel["year"] = pd.to_datetime(nobel["year"], format="%Y")

Then we add a column with the age at which Nobel prize was received and plot a
histogram:

nobel["age_nobel"] = round((nobel["year"] - nobel["born"]).dt.days / 365, 1)
nobel.hist(column="age_nobel", bins=25, figsize=(8,10), rwidth=0.9)

We can print names of all laureates from a given country, e.g.:

nobel[nobel["country"] == "Sweden"].loc[:, "firstname":"surname"]

Beyond the basics

Larger DataFrame operations might be faster using eval() with string expressions, see:

import pandas as pd

Make some really big dataframes

nrows, ncols = 100000, 100

rng = np.random.RandomState(42)

df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols))
for i in range(4))

Adding dataframes the pythonic way yields:

%timeit dfl + df2 + df3 + df4
80ms

And by using eval() :

%timeit pd.eval('dfi + df2 + df3 + df4')
40ms

We can assign function return lists as dataframe columns:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.eval.html#pandas.eval
https://jakevdp.github.io/PythonDataScienceHandbook/03.12-performance-eval-and-query.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.eval.html#pandas.eval

def fibo(n):
"""Compute Fibonacci numbers. Here we skip the overhead from the
recursive function calls by using a list. """
if n < 0:
raise NotImplementedError('Not defined for negative values')
elif n < 2:
return n
memo = [O]*(n+1)
memo[0] = O
memo[1] = 1
for i in range(2, n+1):
memo[i] = memo[i-1] + memo[i-2]
return memo

df = pd.DataFrame({'Generation': np.arange(100)})
df['Number of Rabbits'] = fibo(99) # Assigns list to column

There is much more to Pandas than what we covered in this lesson. Whatever your needs
are, chances are good there is a function somewhere in its API. You should try to get good at
searching the web for an example showing what you can do. And when there is not, you can
always apply your own functions to the data using app1ly :

from functools import lru_cache

@lru_cache
def fib(x):
"""Compute Fibonacci numbers. The @lru_cache remembers values we
computed before, which speeds up this function a lot."""
if x < 0:
raise NotImplementedError('Not defined for negative values')
elif x < 2:
return x
else:
return fib(x - 2) + fib(x - 1)

df = pd.DataFrame({'Generation': np.arange(100)})
df ['Number of Rabbits'] = df['Generation'].apply(fib)

Note that the numpy precision for integers caps at int64 while python ints are unbounded -
limited by memory size. Thus, the result from fibonacci(99) would be erroneous when using

numpy ints. The type of df['Number of Rabbits’][99] given by both functions above is in fact
<class ‘int’>.

Altermatives to Pandas
Polars

Polars is a DataFrame library designed to processing data with a fast lighting time. Polars is
implemented in Rust Programming language and uses Apache Arrow as its memory format.

Dask

https://pandas.pydata.org/docs/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html#pandas.DataFrame.apply
https://pola.rs/
https://arrow.apache.org/docs/format/Columnar.html

Dask is a Python package for parallel computing in Python and uses parallel data-frames for
dealing with very large arrays.

Vaex

Vaex is a high performance Python library for lazy Out-of-Core DataFrames, to visualize and
explore big tabular datasets.

O Keypoints

» pandas dataframes are a good data structure for tabular data
« Dataframes allow both simple and advanced analysis in very compact form

Xarray

Questions

« How shall we deal with real-world datasets that are usually more than just raw
numbers?

« What is the advantage of using labelled multidimensional arrays?

« What does Xarray add to Numpy and Pandas to address these questions?

O Objectives

« Learn how to apply operations over dimensions and select values by label
« Understand Xarray's DataArrays and Datasets

« Learn how to easily plot data in Xarray

o Learn how to turn your own data into an Xarray Dataset

We have already seen how Pandas simplifies working with tabular NumPy data by adding
labels to columns and rows. In this lesson, we take a look at how xarray can be used to add
the same functionality to multidimensional data. Let’s consider the following example:

Imagine we have a dataset representing temperature measurements across different heights,
latitudes, and longitudes. We can store the temperature data as a 3D NumPy array where
each axis corresponds to one of these dimensions:

import numpy as np
Create a 3D numpy array: height x latitude x longitude
data = np.random.rand(10, 5, 5) # 10 heights, 5 latitudes, 5 longitudes

Let’s assume now we want to take a look at a specific value in the dataset at a certain height,
latitude, and longitude. We could do this by indexing the array with the corresponding
indices:

https://www.dask.org/
https://github.com/vaexio/vaex

Get the temperature at height 3, latitude 2, longitude 4
temperature = data[3, 2, 4]

OK, we got a value, but how do we know whether this value corresponds to the correct
height, latitude and longitude? Are we sure that latitude was the second dimension in the
dataset? Was it the second or third index that corresponds to the correct position? In pure
NumPy, we are mostly left in the dark and need to manually keep track of these things.

Unfortunately, Pandas isn’t of much help either since it is not designed for data with more
than 2 dimensions. Fortunately, some clever climate scientists have come up with a solution
to this problem and created Xarray.

What is Xarray?

Xarray is a powerful Python library that introduces labelled multidimensional arrays. This
means the axes have labels (=dimensions), each row/column has a label (coordinates), and
labels can even have units of measurement. This makes it much easier to follow what the
data in an array means and select specific portions of data.

We will first download a dataset similar to the example above to illustrate the advantages of

Xarray. We will cover how to transform your own data into an Xarray Dataset later in this
lecture.

If you have set up your python-for-scicomp environment yesterday or earlier, you need to
install the packages netcdf4 and pythia_datasets manually. You can do this by running

the following command in your (JupyterLab) terminal:

conda install netcdf4 pythia-datasets -c conda-forge

Let us open a python shell and download a public dataset:

>>> from pythia_datasets import DATASETS
>>> filepath = DATASETS.fetch('NARR_19930313_0000.nc')

We can now import xarray and open the dataset. Le'ts take a look at what it contains:

https://github.com/pydata/xarray/graphs/contributors

>>> import xarray as Xr

>>> ds = xr.open_dataset(filepath)
>>> ds

<xarray.Dataset> Size: 15MB

Dimensions: (timel: 1, isobaricl: 29, y: 119, x: 268)
Coordinates:
* timel (timel) datetime64[ns] 8B 1993-03-13
* isobarici (isobaric1l) float32 116B 100.0 125.0 ... 1e+03
*y (y) float32 476B -3.117e+03 ... 714.1
* X (x) float32 1kB -3.324e+03 . 5.343e+03
Data variables:
u-component_of_wind_isobaric (timel, isobaricl, y, x) float32 4MB ...
LambertConformal_Projection int32 4B ...
lat (y, x) float64 255kB ...
lon (y, x) float64 255kB ...
Geopotential height_isobaric (timel, isobaricl, y, x) float32 4MB ...
v-component_of_wind_isobaric (timel, isobaricl1, y, x) float32 4MB ...
Temperature_isobaric (timel, isobarici, y, x) float32 4MB ...
Attributes:
Originating_or_generating_Center: US National Weather Service, Nation...

Originating_or_generating_Subcenter:
GRIB_table_version:
Generating_process_or_model:
Conventions:

history:

featureType:

History:

geospatial lat min:
geospatial lat max:
geospatial_lon_min:
geospatial_ lon_max:

North American Regional Reanalysis
0,131

North American Regional Reanalysis
CF-1.6

Read using CDM IOSP GribCollection v3
GRID

Translated to CF-1.0 Conventions by...
10.753308882144761

46.8308828962289

-153.88242040519995
-42.666108129242815

That was a lot of information at once, but let’s break it down.

isobaric1i, y,and x.

Close to the top of the output we see the pimensions of the dataset: time1 ,

« Below the dimensions, we see the coordinates of the dataset. These are for each

dimension the labels for each value along that dimension. For example, we have a

timestamp of each value along the first dimension (time1).

« The pata variables are the actual data stored in the dataset. We see that the dataset

contains a bunch of arrays, most of which are 4-dimensional, where each dimension

corresponds to one of the bimensions described above. There are also some 2-

dimensional arrays that only have some of the pimensions described above.

« At the bottom, we see the attributes of the dataset. This is a dictionary that stores

metadata about the dataset.

The following image shows the structure of this particular Xarray Dataset:

VA YAy
a4

NN NN
L

ic pressure
o
o

%
¥
850 ///
%
/
&

/|
/
E 900 /// /
1539
'?E = ///16%;3?1
'8 975 ///1/636\\
2 gl A @
h © O O L

CoOrds=—=>& & & & F &

Accessing and manipulating data in Xarray

An xarray pataset typically consists of multiple pataarrays . Our example dataset has 7 of
thenn(u-component_of_wind_isobaric , LambertConformal_Projection , lat , lon,
Geopotential_height_isobaric , v-component_of_wind_isobaric , Temperature_isobaric).VVe

can select a single pataarray from the dataset using a dictionary-like syntax:

>>> temperature_data = ds['Temperature_isobaric']

>>> temperature_data

<xarray.DataArray 'Temperature_isobaric' (timel: 1, isobaric1: 29, y: 119,
X: 268)> Size: 4MB

[924868 values with dtype=float32]

Coordinates:
* timel (timel) datetime64[ns] 8B 1993-03-13
* isobaricl (isobaricl) float32 116B 100.0 125.0 150.0 ... 950.0 975.0 1le+03
*y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 ... 681.6 714.1
* X (x) float32 1kB -3.324e+03 -3.292e+03 ... 5.311e+03 5.343e+03
Attributes:
long_name: Temperature @ Isobaric surface
units: K
description: Temperature
grid_mapping: LambertConformal Projection
Grib_Variable_ Id: VAR_7-15-131-11 L1060
Gribl_Center: 7
Gribl_Subcenter: 15
Gribl_TableVersion: 131
Gribl_Parameter: 11
Gribl_Level Type: 100

Gribl_Level_Desc: Isobaric surface

Xarray uses Numpy(-like) arrays under the hood, we can always access the underlying Numpy

array using the .values attribute:

>>> temperature_numpy = ds['Temperature_isobaric'].values
>>> temperature_numpy

array([[[[201.88957, 202.2177 , 202.49895, ..., 195.10832, 195.23332,
195.37395],
[201.68645, 202.0302 , 202.3427 , ..., 195.24895, 195.38957,
195.51457],
[201.5302 , 201.87395, 202.20207, ..., 195.37395, 195.51457,
195.63957],
Cay
[276.735 , 276.70374, 276.6881 , ..., 289.235 , 289.1725 ,
289.07874],
[276.86 , 276.84436, 276.78186, ..., 289.1881 , 289.11 ,
289.01624],
[277.01624, 276.82874, 276.82874, ..., 289.14124, 289.0475 ,
288.96936]]]], dtype=float32)

Xarray allows you to select data using the .se1() method, which uses the labels of the

dimensions to extract data:

>>> ds['Temperature_isobaric'].sel(x="'-3292.0078")
<xarray.DataArray 'Temperature_isobaric' (timel: 1, isobaricl: 29, y: 119)> Size: 14kB
array([[[202.2177 , 202.0302 , ..., 219.67082, 219.74895],

[202.58566, 202.58566, ..., 219.16379, 219.28879],
cey
[292.1622 , 292.14658, ..., 275.05283, 275.11533],
[294.1256 , 294.14124, ..., 276.84436, 276.82874]]], dtype=float32)
Coordinates:
* timel (timel) datetime64[ns] 8B 1993-03-13
* isobaricl (isobaricl) float32 116B 100.0 125.0 150.0 950.0 975.0 1e+03
*y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 681.6 714.1
X float32 4B -3.292e+03
Attributes:
long_name: Temperature @ Isobaric surface
units: K
description: Temperature

grid_mapping: LambertConformal_Projection
Grib_Variable_Id: VAR_7-15-131-11 L1060
Gribl_Center: 7

Gribl_Subcenter: 15
Gribl_TableVersion: 131
Gribl_Parameter: 11
Gribl_Level Type: 100

Gribl_Level_Desc: Isobaric surface

We can still access the same data by index using the .ise1l() method:

>>> ds['Temperature_isobaric'].isel(x=1)

<xarray.DataArray 'Temperature_isobaric'
array([[[202.2177 , 202.0302 , ...,
[202.58566, 202.58566, ...,

I

[292.1622 , 292.14658, ...,
[294.1256 , 294.14124, ...,

(timel: 1, isobaricl: 29, y: 119)> Size: 14kB
219.67082, 219.74895],

219.16379, 219.28879],

275.05283, 275.11533],
276.84436, 276.82874]]], dtype=float32)

Coordinates:
* timel (timel) datetime64[ns] 8B 1993-03-13
* isobaricl (isobaricl) float32 116B 100.0 125.0 150.0 950.0 975.0 1le+03
*y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 681.6 714.1
X float32 4B -3.292e+03
Attributes:
long_name: Temperature @ Isobaric surface
units: K
description: Temperature

grid_mapping:
Grib_Variable_1Id:
Gribl_Center:
Gribl_Subcenter:

Gribl_TableVersion:

Gribl_Parameter:
Gribl_Level_Type:
Gribil_Level_Desc:

LambertConformal Projection
VAR_7-15-131-11 L1060

7

15

131

11

100

Isobaric surface

A pataarray provides a lot of the functionality we expect from Numpy arrays, such as

sum() , mean() , median() , min() ,and max() that we can use these methods to aggregate

data over one or multiple dimensions:

>>> # Calculate the mean over the

'isobaricl' dimension

>>> ds['Temperature_isobaric'].mean(dim="'isobaricl')

<xarray.DataArray 'Temperature_isobaric'

(timel: 1, y: 119, x: 268)> Size: 128kB

array([[[259.88446, 259.90222, 259.91678, ..., 262.61667, 262.6285 ,
262.65167],
[259.74866, 259.76752, 259.78638, ..., 262.5757 , 262.58218,
262.57516],
[259.6156 , 259.63498, 259.65115, ..., 262.52075, 262.51215,
262.4976],
Ceey,
[249.8796 , 249.83649, 249.79501, ..., 254.43617, 254.49059,
254.54985],
[249.8505 , 249.80202, 249.75244, ., 254.37044, 254.42378,
254.47711],
[249.82195, 249.75998, 249.71204, ..., 254.30956, 254.35805,
254.41139]]], dtype=float32)
Coordinates:
* timel (timel) datetime64[ns] 8B 1993-03-13
*y (y) float32 476B -3.117e+03 -3.084e+03 -3.052e+03 681.6 714.1
* X (x) float32 1kB -3.324e+03 -3.292e+03 5.311e+03 5.343e+03

Let’s take a look at a concrete example and compare it to NumPy. We will calculate the max

temperature over the ‘isobaric1’ dimension at a specific value for x:

>>> # Xarray
>>> ds['Temperature_isobaric'].sel(x='-3259.5447"').max(dim="isobaric1"')
array([[294.11 , 294.14124, 294.1256 , 294.0475 , 293.90686, 293.6256 ,

I

276.46936, 276.59436, 276.6881 , 276.78186, 276.82874]],
dtype=float32)

In comparison, if we were to use plain Numpy, this would be:

>>> # NumPy
>>> np.max(temperature_numpy[:, :, :, 2], axis = 1)
array([[294.11 , 294.14124, 294.1256 , 294.0475 , 293.90686, 293.6256 ,

’

276.46936, 276.59436, 276.6881 , 276.78186, 276.82874]],
dtype=float32)

As you can see, the Xarray code is much more readable and we didn’t need to keep track of
the right indices and order of the dimensions.

Plotting data in Xarray

Like Pandas, Xarray comes with basic plotting capabilities. We can easily plot data in 1D and
2D using the .plot() method. Xarray uses a widely used plotting library called matplotlib for
this. When calling the .p1ot() method, Xarray checks the dimensionality of the data and
plots it accordingly. Let’s import matplotlib and plot the data:

>>> import matplotlib.pyplot as plt

>>> ds['Temperature_isobaric'].isel(x=2).plot()
>>> plt.show()

For a 2D DataArray the plot would resemble this example:

timel = 1993-03-13, x = -3.26e+03 [km]

1000

280
800

260
600

[K]

240
400

Isobaric surface [hPa]
Temperature @ Isobaric surface

220
200

—=3000 —-2500 2000 —-1500 —-1000 -500 0 500
projection_y coordinate [km]

Note, that we didn’t specify the axes labels, Xarray automatically used the coordinates of the
DataArray for the plot. This plot might not be one you include directly in a paper, but it is a
great way to quickly visualize your data.

Let’s have a look at a dataslice of 1D data:

>>> ds['Temperature_isobaric'].isel(x=2, y=5).plot()
>>> plt.show()

The resulting plot detects the dimentionality of the data and plots it accordingly:

timel = 1993-03-13, y = -2.954e+03 [km], x = -3...

280 1

qQ

L)

1]

=

=

4]

2 260

18}

]

]

U

= W

@J_

U 240 -

2

©

1§}

j=N

=

@ 220 1
200 -

T T T T T
200 400 600 800 1000
Isobaric surface [hPa]

If the data has more than two dimensions, Xarray will plot a histogram of the data:

>>> ds['Temperature_isobaric'].plot()
>>> plt.show()

The resulting plot would look like this:

timel = 1993-03-13

160000 ~

140000 ~

120000

100000 ~

80000 +

60000

40000

20000 ~

D_

200 220 240 260 280 300

Temperature @ Isobaric surface
Tl

We can modify the plots by passing additional arguments to the .plot() method. Since we
haven'’t discussed the plotting library matplotlib in this course, we will not go into further
detail here. You can find more information in the Xarray documentation.

Exercises 1

oa Exercises: Xarray-1

Download the NARR 19930313 0000.nc dataset have a look at all Data variables. Calculate
the geopotential height at x=5148.3726 averaged over y and return the median value.
You can use the .plot() method to check on the way whether you use the correct

dimensions and indices.

v Solutions: Xarray-1

One way of calculating this is:

>>> from pythia_datasets import DATASETS
>>> import xarray as Xr
>>>
>>> filepath = DATASETS.fetch('NARR_19930313_0000.nc')
>>> ds = xr.open_dataset(filepath)
>>> ds['Geopotential_height_isobaric'].sel(x=5148.3726).mean('y"').median()
<xarray.DataArray 'Geopotential height_isobaric' ()> Size: 4B
array(4395.487, dtype=float32)
Coordinates:
X float32 4B 5.148e+03

https://xarray.pydata.org/en/stable/plotting.html

Creating your own Xarray Dataset

Creating your own Xarray Dataset is quite simple. We can create a Dataset from scratch
using basic Python data structures. Let’s create a simple weather dataset with pressure and
humidity data with the following script:

import xarray as Xxr
import numpy as np

Define coordinates using basic Python lists
time = ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']
location = ['Locationl', 'Location2', 'Location3']

Define data variables as numpy arrays
pressure_data = np.random.rand(5, 3) * 1000 # Random pressure data in hPa
humidity_data = np.random.rand(5, 3) * 100 # Random humidity data

Put everything together to create the Dataset
ds = xr.Dataset(
data_vars = {
"pressure": (["time", "location"], pressure_data),
"humidity": (["time", "location"], humidity_data)

}I

coords={
"time": time,
"location": location

i

attrs={
"description": "weather data",
"creation_date": "2023-01-01",
"author": "Data Scientist"

}

Converting Xarray objects to NumPy, Pandas and NetCDF

Another handy feature of Xarray is the simple conversion between Xarray objects, NumPy
arrays, Pandas DataFrames and even NetCDF files.

To convert an xarray DataArray to a NumPy array, you can use the .values attribute or the
.to_numpy() method:

Convert the 'pressure' DataArray to a NumPy array
pressure_numpy = ds['pressure'].values

or
pressure_numpy

ds['pressure'].to_numpy()

To convert the entire Dataset or individual DataArrays to pandas DataFrames, use the
.to_dataframe() method:

Convert the entire Dataset to a DataFrame
df = ds.to_dataframe()

Convert a single DataArray to DataFrame
pressure_df = ds['pressure'].to_dataframe()

To save the dataset as a NetCDF file, use the .to_netcdf() method:

Save the Dataset as a NetCDF file
ds.to_netcdf('weather_data.nc')

Exercises 2

za Exercises: Xarray-2

Let’s change from climate science to finance for this example. Put the stock prices and

trading volumes of three companies in one dataset. Create an Xarray Dataset that uses

time and company as dimensions and contains two DataArrays: stock_price and
trading_volume . You can download the data as a pandas DataFrame with the following

code:

import yfinance as yf

AAPL_df = yf.download("AAPL", start="2020-01-01", end="2024-01-01")
GOOGL_df = yf.download("GOOGL", start="2020-01-01", end="2024-01-01")
MSFT_df = yf.download("MSFT", start="2020-01-01", end="2024-01-01")

As a last thing, add the currency of the stock prices as an attribute to the Dataset.

v Solutions: Xarray-2

We can use a script similar to this one:

import xarray as xr
import numpy as np
import yfinance as yf

start_date = "2020-01-01"
end_date = "2024-01-01"

AAPL_df = yf.download("AAPL", start=start_date, end=end_date)
GOOGL_df = yf.download("GOOGL", start=start_date, end=end_date)
MSFT_df = yf.download("MSFT", start=start_date, end=end_date)

stock_prices = np.array(
[
AAPL_df["Close"].values,
GOOGL_df["Close"].values,
MSFT_df["Close"].values,

trading_volumes = np.array(
[
AAPL_df["Volume"].values,
GOOGL_df["Volume"].values,
MSFT_df["Volume"].values,

companies = ["AAPL", "GOOGL", "MSFT"]
time = AAPL_df.index[:].strftime("%Y-%m-%d").tolist()

ds = xr.Dataset(
{
"stock_price": (["company", "time"], stock_prices[:, :, 0]),
"trading_volume": (["company", "time"], trading_volumes[:, :, 0]),
+
coords={"time": time, "company": companies},
attrs={"currency": "USD"},

Advanced Topics

We have barely scratched the surface of all the features Xarray has to offer. Hopefully this
quick introduction has shown you whether Xarray is the right tool for your data analysis
needs. If you are interested in learning more about Xarray, here are some topics for further

reading:

« Xarray integrates with Dask to support parallel computations and streaming computation
on datasets that don'’t fit into memory. If you work with datasets that are too large for
your memory, have a read of the chapter Parallel computing with Dask in the Xarray

documentation.

« If you want to accelerate Xarray operations with your GPU, have a look at CuPy-Xarray.
« Xarray can be combined with pint, a Python library that adds support for physical
qguantities to NumPy arrays. This blog post provides a good introduction to the topic.

https://docs.xarray.dev/en/stable/user-guide/dask.html
https://cupy-xarray.readthedocs.io/latest/
https://xarray.dev/blog/introducing-pint-xarray

« You can extend Xarray with your own methods using the register_dataset_accessor()
method. This is a powerful feature that allows you to add custom methods to your own
Xarray Datasets.

Plotting with Matplotlib

« What happens if you can’t automatically produce plots?
« When to use Matplotlib for data visualization?
« When to prefer other libraries?

O Objectives

« Be able to create simple plots with Matplotlib and tweak them
« Know about object-oriented vs pyplot interfaces of Matplotlib

Be able to adapt gallery examples

Know how to look for help
Know that other tools exist

Repeatability/reproducibility
From Claus O. Wilke: “Fundamentals of Data Visualization”:

One thing | have learned over the years is that automation is your friend. | think figures should
be autogenerated as part of the data analysis pipeline (which should also be automated), and
they should come out of the pipeline ready to be sent to the printer, no manual post-processing
needed.

« Try to minimize manual post-processing. This could bite you when you need to regenerate
50 figures one day before submission deadline or regenerate a set of figures after the
person who created them left the group.

« There is not the one perfect language and not the one perfect library for everything.

« Within Python, many libraries exist:

o Matplotlib: probably the most standard and most widely used

o Seaborn: high-level interface to Matplotlib, statistical functions built in

o Vega-Altair: declarative visualization, statistics built in (we have an entire lesson about
data visualization using Vega-Altair)

o Plotly: interactive graphs

o Bokeh: also here good for interactivity

o plotnine: implementation of a grammar of graphics in Python, it is based on ggplot2

o ggplot: R users will be more at home

o PyNGL: used in the weather forecast community

o K3D: Jupyter Notebook extension for 3D visualization

https://docs.xarray.dev/en/stable/generated/xarray.register_dataset_accessor.html
https://clauswilke.com/dataviz/
https://matplotlib.org/stable/gallery/index.html
https://seaborn.pydata.org/examples/index.html
https://altair-viz.github.io/gallery/index.html
https://coderefinery.github.io/data-visualization-python/
https://coderefinery.github.io/data-visualization-python/
https://plotly.com/python/
https://demo.bokeh.org/
https://plotnine.readthedocs.io/
https://ggplot2.tidyverse.org/
https://yhat.github.io/ggpy/
https://www.pyngl.ucar.edu/Examples/gallery.shtml
https://k3d-jupyter.org/gallery/index.html

« Two main families of libraries: procedural (e.g. Matplotlib) and declarative.

Why are we starting with Matplotlib?

« Matplotlib is perhaps the most popular Python plotting library.

« Many libraries build on top of Matplotlib (example: Seaborn).

« MATLAB users will feel familiar.

« Even if you choose to use another library (see above list), chances are high that you need
to adapt a Matplotlib plot of somebody else.

« Libraries that are built on top of Matplotlib may need knowledge of Matplotlib for
custom adjustments.

However it is a relatively low-level interface for drawing (in terms of abstractions, not in
terms of quality) and does not provide statistical functions. Some figures require typing and
tweaking many lines of code.

Many other visualization libraries exist with their own strengths, it is also a matter of
personal preferences.

Getting started with Matplotlib

We can start in a Jupyter Notebook since notebooks are typically a good fit for data
visualizations. But if you prefer to run this as a script, this is also OK.

Let us create our first plot using subplots() , scatter , and some other methods on the

Axes object:

import matplotlib.pyplot as plt

this is dataset 1 from

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

data_x = [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]
data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

fig, ax = plt.subplots()

ax.scatter(x=data_x, y=data_y, c="#E69FQ0")
ax.set_xlabel("we should label the x axis")
ax.set_ylabel("we should label the y axis")

ax.set_title("some title")

uncomment the next line if you would like to save the figure to disk
fig.savefig("my-first-plot.png")

https://seaborn.pydata.org/examples/index.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.scatter.html#matplotlib.axes.Axes.scatter
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes

some title

11 +

10 4 ®

we should label the y axis
®

4 6 8 10 12 14
we should label the x axis

This is the result of our first plot.

When running a Matplotlib script on a remote server without a “display” (e.g. compute
cluster), you may need to add the matplotlib.use call:

import matplotlib.pyplot as plt
matplotlib.use("Agg")

... rest of the script

Exercise: Matplotlib

s Exercise Matplotlib-1: extend the previous example (15 min)

« Extend the previous plot by also plotting this set of values but this time using a
different color (#56B4E9):

this 1s dataset 2
data2_y = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]

« Then add another color (#e09e73) which plots the second dataset, scaled by 2.0.

here we multiply all elements of data2_y by 2.0
data2_y_scaled = [y * 2.0 for y in data2_y]

« Try to add a legend to the plot with matplotlib.axes.Axes.legend() and searching the

web for clues on how to add labels to each dataset. You can also consult this great
quick start guide.

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/getting-started.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/getting-started.png
https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.use
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/stable/users/explain/quick_start.html

« At the end it should look like this one:

some title
18 4 2 set 1 Y ® e
® set2 @ ®
16 - ® set 2 (scaled) ° °
(%]
2 0
5 14 -
=
[l
£ 12 b
W
o L]
= 10 1 °
=
= .] o]
o @]
G 8- o ° ¢ . °
= ¢ o
1l @ i
6 8
® L]
al ®
!
4 6 8 10 12 14

we should label the x axis

« Experiment also by using named colors (e.g. “red”) instead of the hex-codes.

import matplotlib.pyplot as plt

this is dataset 1 from

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

data_x = [10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]
data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

this is dataset 2
data2_y = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]

here we multiply all elements of data2 y by 2.0
data2_y scaled = [y * 2.0 for y in data2_y]

fig, ax = plt.subplots()

ax.
ax.
ax.

ax.
ax.
ax.
ax.

scatter(x=data_x, y=data_y, c="#E69F00", label="set 1")
scatter(x=data_x, y=data2_y, c="#56B4E9", label="set 2")
scatter(x=data_x, y=data2_y_ scaled, c="#009E73", label="set 2 (scaled)")

set_xlabel("we should label the x axis")

set_ylabel("we should label the y axis")
set_title("some title")
legend()

uncomment the next line if you would like to save the figure to disk
fig.savefig("exercise-plot.png")

& Why these colors?

This qualitative color palette is optimized for all color-vision deficiencies, see
https:/clauswilke.com/dataviz/color-pitfalls.html and Okabe, M., and K. Ito. 2008. “Color
Universal Design (CUD): How to Make Figures and Presentations That Are Friendly to
Colorblind People”.

Matplotlib has two different interfaces

When plotting with Matplotlib, it is useful to know and understand that there are two
approaches even though the reasons of this dual approach is outside the scope of this
lesson.

« The more modern option is an object-oriented interface or explicit interface (the fig

and ax objects can be configured separately and passed around to functions):

import matplotlib.pyplot as plt

this is dataset 1 from

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

data_x = [160.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]
data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

fig, ax = plt.subplots()
ax.scatter(x=data_x, y=data_y, c="#E69FQ0")
ax.set_xlabel("we should label the x axis")

ax.set_ylabel("we should label the y axis")
ax.set_title("some title")

« The more traditional option mimics MATLAB plotting and uses the pyplot interface or
implicit interface (p1t carries the global settings):

import matplotlib.pyplot as plt

this is dataset 1 from

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

data_x = [16.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0]
data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

plt.scatter(x=data_x, y=data_y, c="#E69F00")
plt.xlabel("we should label the x axis")

plt.ylabel("we should label the y axis")
plt.title("some title")

https://clauswilke.com/dataviz/color-pitfalls.html
http://jfly.iam.u-tokyo.ac.jp/color/
http://jfly.iam.u-tokyo.ac.jp/color/
http://jfly.iam.u-tokyo.ac.jp/color/
https://matplotlib.org/stable/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot

When searching for help on the internet, you will find both approaches, they can also be
mixed. Although the pyplot interface looks more compact, we recommend to learn and use
the object oriented interface.

® Why do we emphasize this?

One day you may want to write functions which wrap around Matplotlib function calls
and then you can send frigure and Axes into these functions and there is less risk that

adjusting figures changes settings also for unrelated figures created in other functions.

When using the pyplot interface, settings are modified for the entire matplotlib.pyplot

package. The latter is acceptable for simple scripts but may yield surprising results when
introducing functions to enhance/abstract Matplotlib calls.

Styling and customizing plots

« Before you customize plots “manually” using a graphical program, please consider how
this affects reproducibility.

« Try to minimize manual post-processing. This might bite you when you need to
regenerate 50 figures one day before submission deadline or regenerate a set of figures
after the person who created them left the group.

« Matplotlib and also all the other libraries allow to customize almost every aspect of a
plot.

o lItis useful to study Matplotlib parts of a figure so that we know what to search for to
customize things.

« Matplotlib cheatsheets: https:/github.com/matplotlib/cheatsheets

« You can also select among pre-defined themes/ style sheets with use , for instance:

plt.style.use('ggplot')

Exercises: Styling and customization

Here are 3 exercises where we try to adapt existing scripts to either tweak how the plot
looks (exercises 1 and 2) or to modify the input data (example 3).

This is very close to real life: there are so many options and possibilities and it is almost
impossible to remember everything so this strategy is useful to practice:

Select an example that is close to what you have in mind

Being able to adapt it to your needs

Being able to search for help

Being able to understand help request answers (not easy)

https://matplotlib.org/stable/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure
https://github.com/matplotlib/cheatsheets
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/api/style_api.html#matplotlib.style.use

¢ Exercise Customization-1: log scale in Matplotlib (15 min)

In this exercise we will learn how to use log scales.

« To demonstrate this we first fetch some data to plot:

import pandas as pd

url = (
"https://raw.githubusercontent.com/plotly/datasets/master/gapminder_with_codes.csv
)

gapminder_data = pd.read_csv(url).query("year == 2007")

gapminder_data

« Try the above snippet in a notebook and it will give you an overview over the data.

« Then we can plot the data, first using a linear scale:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

ax.scatter(x=gapminder_data["gdpPercap"], y=gapminder_data["lifeExp"],
alpha=0.5)

ax.set_xlabel("GDP per capita (PPP dollars)")
ax.set_ylabel("Life expectancy (years)")

This is the result but we realize that a linear scale is not ideal here:

e []
EDTS A
P o 0 © 4, @ o ® e o
9 og "
D) o ®
5. @ g
’ L]
7 701 e 8 o o
[+]
v ®e
= ?l
=
E 0
= 60
M
5 ®. °
o ¥
5
S S
o)
o
1 .
40 + o
0 10000 20000 30000 40000 50000

GDP per capita (PPP dollars)

« Your task is to switch to a log scale and arrive at this result:

o
- -
50 ® \-.gg'h:
~;- & o
-' t‘i
T 70 .} ¢
s e,
= o}
f::T -. °¢ d
e e ® o]
v e o © °
!"_I: L] :. L]
50 - ® @0 s |
0 o
e o -.-. ®
“ ® oo o
40 - ®
10° R

GDP per capita (PPP dollars)

« What does alpha=0.5 do?

See ax.set_xscale() .

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xscale.html#matplotlib.axes.Axes.set_xscale

fig, ax = plt.subplots()
ax.scatter(x=gapminder_data["gdpPercap"], y=gapminder_data["lifeExp"], alpha=0.5)
ax.set_xscale("log")

ax.set_xlabel("GDP per capita (PPP dollars)")
ax.set_ylabel("Life expectancy (years)")

« alpha sets transparency of points.

ga Exercise Customization-2: preparing a plot for publication (15 min)

Often we need to create figures for presentation slides and for publications but both have
different requirements: for presentation slides you have the whole screen but for a figure
in a publication you may only have few centimeters/inches.

For figures that go to print it is good practice to look at them at the size they will be
printed in and then often fonts and tickmarks are too small.

Your task is to make the tickmarks and the axis label font larger, using Matplotlib parts of
a figure and web search, and to arrive at this:

®
— ®
80 @ o %D%g)o%o
. e @ &
7 ST 3.7 aF M
o o P PR 5 ¢
0 70 - @ o o
>
E.? O.;:;. DDO 6} °
- o ® o
E 60 — 0 .:}D'D O e
U e @
@ e o, © ®
o @] @
< o ° o
v & ° %
o 50 - ® ¢ ®
= e o}
— o] e © o o
® o
© ® oo °
40 — °
! ! ! [|| ! ! ! ! 1T || T
103 104

GDP per capita (PPP dollars)

https://matplotlib.org/stable/api/_as_gen/matplotlib.artist.Artist.set_alpha.html#matplotlib.artist.Artist.set_alpha
https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure
https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure

See ax.tick_params .

fig, ax = plt.subplots()
ax.scatter(x="gdpPercap", y="lifeExp", alpha=0.5, data=gapminder_data)
ax.set_xscale("log")

ax.set_xlabel("GDP per capita (PPP dollars)", fontsize=15)
ax.set_ylabel("Life expectancy (years)", fontsize=15)

ax.tick_params(which="major", length=10)
ax.tick_params(which="minor", length=5)
ax.tick_params(labelsize=15)

® Discussion

After the exercises, the group can discuss their findings and it is important to clarify
guestions at this point before moving on.

Matplotlib and pandas DataFrames

In the above exercises we have sent individual columns of the gapminder_data DataFrame

into ax.scatter() like this:

fig, ax = plt.subplots()

ax.scatter(x=gapminder_data["gdpPercap"], y=gapminder_data["lifeExp"], alpha=0.5)

It is possible to do this instead and let Matplotlib “unpack” the columns:

fig, ax = plt.subplots()

ax.scatter(x="gdpPercap", y="lifeExp", alpha=0.5, data=gapminder_data)

Other input types are possible. See Types of inputs to plotting functions.

O Keypoints

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.tick_params.html#matplotlib.axes.Axes.tick_params
https://matplotlib.org/stable/users/explain/quick_start.html#types-of-inputs-to-plotting-functions

« Minimize manual post-processing, script everything.

« Browse a number of example galleries to help you choose the library that fits best
your work/style.

« Figures for presentation slides and figures for manuscripts have different
requirements.

« Think about color-vision deficiencies when choosing colors. Use existing solutions for
this problem.

Plotting with Vega-Altair

« Beable to create simple plots with Vega-Altair and tweak them
« Know how to look for help
Reading data with Pandas from disk or a web resource

« Know how to tweak example plots from a gallery for your own purpose

We will build up this notebook (spoiler alert!)

Instructor note

e 10 min: Introduction

« 10 min: Type-along (creating a first plot)

« 20 min: Exercise (using visual channels)

« 20 min: Exercise (adapting a gallery example and customizing)
« 10 min: Key points, discussion, and Q&A

Repeatability/reproducibility
From Claus O. Wilke: “Fundamentals of Data Visualization”:

One thing | have learned over the years is that automation is your friend. | think figures should
be autogenerated as part of the data analysis pipeline (which should also be automated), and
they should come out of the pipeline ready to be sent to the printer, no manual post-processing
needed.

« Try to minimize manual post-processing. This could bite you when you need to regenerate
50 figures one day before submission deadline or regenerate a set of figures after the
person who created them left the group.

« Thereis not the one perfect language and not the one perfect library for everything.

« Within Python, many libraries exist:

o Vega-Altair: declarative visualization, statistics built in

o

Matplotlib: probably the most standard and most widely used
Seaborn: high-level interface to Matplotlib, statistical functions built in

o

Plotly: interactive graphs

o

o Bokeh: also here good for interactivity

https://altair-viz.github.io/
https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting.ipynb
https://clauswilke.com/dataviz/
https://altair-viz.github.io/gallery/index.html
https://matplotlib.org/stable/gallery/index.html
https://seaborn.pydata.org/examples/index.html
https://plotly.com/python/
https://demo.bokeh.org/

o

plotnine: implementation of a grammar of graphics in Python, it is based on ggplot2

o

ggplot: R users will be more at home

o

PyNGL: used in the weather forecast community

o

K3D: Jupyter Notebook extension for 3D visualization

o

Mayavi: 3D scientific data visualization and plotting in Python
« Two main families of libraries: procedural (e.g. Matplotlib) and declarative (e.g. Vega-
Altair).

Why are we starting with Vega-Altair?

« Concise and powerful

. “Simple, friendly and consistent API” allows us to focus on the data visualization part and
get started without too much Python knowledge

« The way it combines visual channels with data columns can feel intuitive

« Interfaces very nicely with Pandas (earlier episode)

« Easy to change figures

« Good documentation

« Open source

« Makes it easy to save figures in a number of formats (svg, png, html)

« Easy to save interactive visualizations to be used in websites

Example data: Weather data from two Norwegian cities

We will experiment with some example weather data obtained from Norsk
KlimaServiceSenter, Meteorologisk institutt (MET) (CC BY 4.0). The data is in CSV format
(comma-separated values) and contains daily and monthly weather data for two cities in
Norway: Oslo and Tromsg. You can browse the data here in the lesson repository.

We will use the Pandas library to read the data into a dataframe. We have learned about
Pandas in an earlier episode.

Pandas can read from and write to a large set of formats (overview of input/output functions
and formats). We will load a CSV file directly from the web. Instead of using a web URL we
could use a local file name instead.

Pandas dataframes are a great data structure for tabular data and tabular data turns out to
be a great input format for data visualization libraries. Vega-Altair understands Pandas
dataframes and can plot them directly.

Reading data into a dataframe

We can try this together in a notebook: Using Pandas we can merge, join, concatenate, and
compare dataframes, see https:/pandas.pydata.org/pandas-
docs/stable/user_guide/merging.html.

https://plotnine.readthedocs.io/
https://ggplot2.tidyverse.org/
https://yhat.github.io/ggpy/
https://www.pyngl.ucar.edu/Examples/gallery.shtml
https://k3d-jupyter.org/gallery/index.html
https://docs.enthought.com/mayavi/mayavi/
https://altair-viz.github.io/
https://pandas.pydata.org/
https://seklima.met.no/observations/
https://seklima.met.no/observations/
https://github.com/AaltoSciComp/python-for-scicomp/tree/master/resources/data/plotting
https://pandas.pydata.org/pandas-docs/stable/reference/io.html
https://pandas.pydata.org/pandas-docs/stable/reference/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Let us try to concatenate two dataframes: one for Tromsa weather data (we will now load
monthly values) and one for Oslo:

import pandas as pd

url prefix = "https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/plotting/"

data_tromso = pd.read_csv(url prefix + "tromso-monthly.csv")
data_oslo = pd.read_csv(url_prefix + "oslo-monthly.csv")

data_monthly = pd.concat([data_tromso, data_oslo], axis=0)

let us print the combined result
data_monthly

Before plotting the data, there is a problem which we may not see yet: Dates are not in a
standard date format (YYYY-MM-DD). We can fix this:

replace mm.yyyy to date format
data_monthly["date"] = pd.to_datetime(list(data_monthly["date"]), format="%m.%Y")

With Pandas it is possible to do a lot more (adjusting missing values, fixing inconsistencies,
changing format).

Plotting the data

Now let’s plot the data. We will start with a plot that is not optimal and then we will explore
and improve a bit as we go:

import altair as alt

alt.Chart(data_monthly).mark_bar().encode(
x="date",
y="precipitation",
color="name",

3504 name

[l Oslo - Blindern

Tromso - Langnes
300 u 9

250

200

150+

precipitation

100+

50

0-
October December February April June August October
date

Monthly precipitation for the cities Oslo and Tromsga over the course of a year.

& Let us pause and explain the code

o alt isashort-hand for altair which we imported on top of the notebook
o chart() isafunction defined inside altair which takes the data as argument
e mark_bar() isa function that produces bar charts

e encode() isa function which encodes data columns to visual channels
Observe how we connect (encode) visual channels to data columns:

« x-coordinate with “date”
 y-coordinate with “precipitation”
« color with “name” (name of weather station; city)

We can improve the plot by giving Vega-Altair a bit more information that the x-axis is
temporal (T) and that we would like to see the year and month (yearmonth):

alt.Chart(data_monthly).mark_bar().encode(
x="yearmonth(date):T",
y="precipitation",
color="name",

Apart from T (temporal), there are other encoding data types:

« Q (quantitative)
« O (ordinal)
« N (hominal)

https://altair-viz.github.io/user_guide/encodings/index.html#encoding-data-types

o T (temporal)
« G (geojson)

350 name
B Oslo - Blindern
Tromso - Langnes
300 u g

precipitation

0

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Monthly precipitation for the cities Oslo and Tromsg over the course of a year.

Let us improve the plot with another one-line change:

alt.Chart(data_monthly).mark_bar().encode(
x="yearmonth(date):T",
y="precipitation",
color="name",
column="name",

name

Oslo - Blindern Tromso - Langnes

name

I Oslo - Blindern
[Tromso - Langnes

250

200

100
50 IIII II
. I -I —

rr 1 ‘1 T _*T1 T T T T T T T 1

[y

ol

o
1

precipitation

rr 1t ‘1 _~T1_T1 T T T T T T T 1

Oct 2022 Feb 2023 Jun 2023 Oct 2023 Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month) date (year-month)

Monthly precipitation for the cities Oslo and Tromsg over the course of a year with with both cities
plotted side by side.

With another one-line change we can make the bar chart stacked:

alt.Chart(data_monthly).mark_bar().encode(
x="yearmonth(date):T",
y="precipitation",
color="name",
x0ffset="name",

250 name -
[Oslo - Blindern
[Tromso - Langnes

200+

c

=]

s

=

=

3}

]

b

o

s

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Monthly precipitation for the cities Oslo and Tromsg over the course of a year plotted as stacked
bar chart.

This is not publication-quality yet but a really good start!

Let us try one more example where we can nicely see how Vega-Altair is able to map visual
channels to data columns:

alt.Chart(data_monthly).mark_area(opacity=0.5).encode(
x="yearmonth(date):T",
y="max temperature",
y2="min temperature",
color="name",

359 name

() Oslo - Blindern
Tromso - Langnes

max temperature, min temperature

|

= 1

o)] o [&)]
1 1

-15-

T T T T T T T 1
Feb 2023 Jun 2023 Oct 2023
date (year-month)

Monthly temperature ranges for two cities in Norway.

& What other marks and other visual channels exist?

« Overview of available marks

T
Oct 2022

« Overview of available visual channels
» Gallery of examples

Exercise: Using visual channels to re-arrange plots

ga Plotting-1: Using visual channels to re-arrange plots

1. Try to reproduce the above plots if they are not already in your notebook.

2. Above we have plotted the monthly precipitation for two cities side by side using a
stacked plot. Try to arrive at the following plot where months are along the y-axis and
the precipitation amount is along the x-axis:

Nov 2023 name

B Oslo - Blindern
[Tromso - Langnes

Oct 2023
Sep 2023
Aug 2023

Jul 2023
Jun 2023
May 2023
Apr 2023

Mar 2023

date (year-month)

Feb 2023
Jan 2023
Dec 2022
Nov 2022

Oct 2022 T T
0 50 100 150

precipitation

T T
200 250

https://altair-viz.github.io/user_guide/marks/index.html
https://altair-viz.github.io/user_guide/encodings/channels.html
https://altair-viz.github.io/gallery/index.html

3. Ask the Internet or Al how to change the axis title from “precipitation” to

“Precipitation (mm)”.

4. Modify the temperature range plot to show the temperature ranges for the two cities
side by side like this:

354

30+

254

20+

15+

10

-5

max temperature, min temperature

-10-

-15-

name

Oslo - Blindern Tromso - Langnes
name
Oslo - Blindern
Tromso - Langnes
r T T T T T T T T T T T 1 r T T T T T T T T T T T 1
Oct 2022 Feb 2023 Jun 2023 Oct 2023 Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month) date (year-month)

1. Copy-paste code blocks from above.

2. Basically we switched x and y:

alt.Chart(data_monthly).mark_bar().encode(

y="yearmonth(date):T",
x="precipitation",
color="name",
yoffset="name",

3. This can be done with the following modification:

alt.Chart(data_monthly).mark_bar().encode(

y="yearmonth(date):T",
x=alt.X("precipitation").title("Precipitation (mm)"),
color="name",

yOoffset="name",

4. We added one line:

alt.Chart(data_monthly).mark_area(opacity=0.5).encode(

x="yearmonth(date):T",
y="max temperature",
y2="min temperature",
color="name",
column="name",

More fun with visual channels

Now we will try to plot the daily data and look at snow depths. We first read and
concatenate two datasets:

url prefix = "https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/plotting/"

data_tromso = pd.read_csv(url_prefix + "tromso-daily.csv'")
data_oslo = pd.read_csv(url_prefix + "oslo-daily.csv")

data_daily = pd.concat([data_tromso, data_oslo], axis=0)

We adjust the data a bit:

replace dd.mm.yyyy to date format
data_daily["date"] = pd.to_datetime(list(data_daily["date"]), format="%d.%m.%Y")

we are here only interested in the range december to may
data_daily = data_daily[

(data_daily["date"] > "2022-12-01") & (data_daily["date"] < "2023-05-01")
1

Now we can plot the snow depths for the months December to May for the two cities:

alt.Chart(data_daily).mark_bar().encode(
x="date",
y="snow depth",
column="name",

name

Oslo - Blindern Tromso - Langnes
120+
100+
80
<
-
o
]
60—
2
o
c
7]
40
20+
o-
December 2023 February March April Mapecember 2023 February March April May
date date

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway.

What happens if we try to color the plot by the “max temperature” values?

alt.Chart(data_daily).mark_bar().encode(
x="date",
y="snow depth",
color="max temperature",
column="name",

The result looks neat:

name

Oslo - Blindern Tromso - Langnes
1204 max temperature
100
80
K=
=
o
3
60—
2
°
f=4
[}
40
. L “ ' [‘
N nl | J
December 2023 February March April Maypecember 2023 February March April
date date

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway. Colored
by daily max temperature.

We can change the color scheme (available color schemes):

alt.Chart(data_daily).mark_bar().encode(
x="date",
y="snow depth",
color=alt.Color("max temperature").scale(scheme="plasma"),
column="name",

With the following result:

name

Oslo - Blindern Tromso - Langnes
120+
100 15
10
80—
< 5
=
o
]
z 07 0
°
c
@
-5
40—
20
0 .
December 2023 February March Aprll Maﬁecember 2023 February March April
date date

max temperature

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway. Colored

by daily max temperature. Warmer days are often followed by reduced snow depth.

Let’s try one more change to show that we can experiment with different plot types by
changing mark_bar() to something else, in this case mark_circle() :

alt.Chart(data_daily).mark_circle().encode(
x="date",
y="snow depth",
color=alt.Color("max temperature").scale(scheme="plasma"),
column="name",

https://vega.github.io/vega/docs/schemes/

name

Oslo - Blindern

120+

Tromso - Langnes

®

max temperature

- A=l
° @
100 o o 15
°
°
s 10
80 c
< 5
& .
% 60 ® .o 0
s o® oad o o.
. - % 5
40+ ° -
. v PRI
- ‘ ° ° [) 1) % «
o -)
20 ® - : ‘\.‘.’ e ® % -
o.' ° Wﬁ S - L4
® w °
0 - ct® - aw - B eet ®

T T T
February March April

date

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway. Colored
by daily max temperature. Warmer days are often followed by reduced snow depth.

Themes

T T T T
February March April 2023

date

T
2023

In Vega-Altair you can change the theme and select from a long list of themes. On top of your
notebook try to add:

alt.themes.enable('dark")

Then re-run all cells. Later you can try some other themes such as:

e fivethirtyeight
e latimes

e urbaninstitute

You can even define your own themes!

Exercise: Adapting a gallery example

In this exercise we can try to adapt existing scripts to either tweak how the plot looks or to
modify the input data. This is very close to real life: there are so many options and
possibilities and it is almost impossible to remember everything so this strategy is useful to
practice:

« Select an example that is close to what you have in mind
« Being able to adapt it to your needs
« Being able to search for help

ga Plotting-2: Adapting a gallery example

https://altair-viz.github.io/
https://github.com/vega/vega-themes

This is a great exercise which is very close to real life.

« Browse the Vega-Altair example gallery.
» Select one example that is close to your current/recent visualization project or simply
interests you.
« First try to reproduce this example, as-is, in the Jupyter Notebook.
« If you get the error “ModuleNotFoundError: No module named ‘vega_datasets’”, then
try one of these examples: (they do not need the “vega_datasets” module)
o Slider cutoff (below you can find a walk-through for this example)
o Multi-Line tooltip
o Heatmap
o Layered histogram
« Then try to print out the data that is used in this example just before the call of the
plotting function to learn about its structure. Consider writing the data to file before
changing it.
« Then try to modify the data a bit.
« If you have time, try to feed it different, simplified data. This will be key for adapting
the examples to your projects.

v Example walk-through for the slider cutoff example

In this walk-through | imagine browsing: https:/altair-viz.github.io/gallery/index.html

Then this example caught my eye: https:/altair-viz.github.io/gallery/slider_cutoff.html

| then copy-paste the example code into a notebook and try to run it and | get the
same result.

If you get stuck below, you can also browse all the steps in a notebook using
nbviewer.

Next, there is a lot of code that | don’t (need to) understand yet but my eyes are trying
to find alt.chart which tells me that the data must be the “df” in alt.chart(df) :

https://altair-viz.github.io/gallery/index.html
https://altair-viz.github.io/gallery/slider_cutoff.html
https://altair-viz.github.io/gallery/multiline_tooltip_standard.html
https://altair-viz.github.io/gallery/simple_heatmap.html
https://altair-viz.github.io/gallery/layered_histogram.html
https://altair-viz.github.io/gallery/index.html
https://altair-viz.github.io/gallery/slider_cutoff.html
https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting-exercise-2.ipynb
https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting-exercise-2.ipynb

import altair as alt
import pandas as pd
import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({
'xval': range(100),
'yval': rand.randn(100).cumsum()

1)

slider = alt.binding_range(min=0, max=100, step=1)
cutoff = alt.param(bind=slider, value=50)

alt.Chart(df).mark_point().encode(
x="xval',
y='yval',
color=alt.condition(
alt.datum.xval < cutoff,
alt.value('red'), alt.value('blue')
)
) .add_params(
cutoff
)

My next step will be to print out the data df just before the call to ait.chart :

import altair as alt
import pandas as pd
import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({
'xval': range(100),
'yval': rand.randn(100).cumsum()

1)

slider = alt.binding_range(min=0, max=100, step=1)
cutoff = alt.param(bind=slider, value=50)

print(df)

alt.Chart(df).mark_point().encode(
x="xval',
y='yval',
color=alt.condition(
alt.datum.xval < cutoff,
alt.value('red'), alt.value('blue')
)
) .add_params(
cutoff

)

The print reveals that df is a dataframe which contains x and y values:

xval yval

0 0 0.496714
1 1 0.358450
2 2 1.006138
3 3 2.529168
4 4 2.295015

95 95 -10.712354
96 96 -10.416233
97 97 -10.155178
98 98 -10.150065
99 99 -10.384652

[100 rows X 2 columns]

The next thing that often helps me is to save the data to a comma-separated values
(CSV) file:

import pandas as pd

df.to_csv("data.csv", index=False)

| then open the file in an editor and see that it contains 100 rows:

xval, yval

0,0.4967141530112327
1,0.358449851840048
2,1.0061383899407406
3,2.5291682463487657
4,2.2950148716254297
5,2.060877914676249
6,3.6400907301836405
7,4.407525459336549
8,3.938051073401597
9,4.4806111169875615

Saving the data to file often helps me to see the structure of the data and now | am in
a position to replace this with my own data. | create a file called “mydata.csv” and
there | use the maximum temperatures for months 1-10 from the Tromso monthly data
which we used further up:

xval,yval
01,7.7
02,6.6
03,4.5
04,9.8
05,17.
06, 25.
07,26.
08,25.
09,19.
10,9.8

W RN AN

In the notebook | then verify that the reading of the data works:

mydata = pd.read_csv("mydata.csv'")

mydata

Now | can replace the example with my own data (note how | now can comment out
some code that | don’t need any longer):

import altair as alt
import pandas as pd
import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({

'xval': range(1060),
'yval': rand.randn(100).cumsum()
1)

slider = alt.binding_range(min=0, max=100, step=1)
cutoff = alt.param(bind=slider, value=50)

print(df)
df = pd.read_csv("mydata.csv")

alt.Chart(df).mark_point().encode(
x="xval',
y='yval',
color=alt.condition(
alt.datum.xval < cutoff,
alt.value('red'), alt.value('blue')
)
) .add_params(
cutoff

)

Seems to work! | then make few more adjustments (I want the slider to work on the y-
axis and have a more reasonable default):

import altair as alt
import pandas as pd

slider
cutoff

alt.binding_range(min=0, max=30, step=1)
alt.param(bind=slider, value=15)

df = pd.read_csv('"mydata.csv")

alt.Chart(df).mark_point().encode(
x="xval',
y='yval',
color=alt.condition(
alt.datum.yval < cutoff,
alt.value('red'), alt.value('blue')

)

) .add_params(
cutoff

)

My next steps would then be to change axis titles, display the month names, add a
legend, and refine from here.

You can also browse all the steps in a notebook using nbviewer.

O Keypoints

« Browse a number of example galleries to help you choose the library that fits best
your work/style.

« Minimize manual post-processing and try to script all steps.

o CSV (comma-separated values) files are often a good format to store the data that we
wish to plot.

» Read the data into a Pandas dataframe and then plot it with Vega-Altair where you
connect data columns to visual channels.

Working with Data

Questions

« How do you store your data right now?
« Are you doing data cleaning / preprocessing every time you load the data?

O Objectives

 Learn benefits/drawbacks of common data formats.
« Learn how you can read and write data in a variety of formats.

https://nbviewer.org/github/AaltoSciComp/python-for-scicomp/blob/master/resources/notebooks/plotting-exercise-2.ipynb
https://altair-viz.github.io/user_guide/encodings/channels.html

I SENT YOU THE DATA.
THHNEREE!

...THIS 15 A WORD DOCUMENT
CONTAINING AN EMBEDPED PHOTO
YOU TOOK OF YOUR SCREEN
WITH THE SPREADSHEET OPEN.

YEAH? DOES YOUR COMPUTER
NOT SUPPORT .NORM FILES?
MAYBE YOU NEED To UPDATE.

./

1'\

SINCE. EVERYONE. SENDS STUFE THS
LAY ANYUAY WE SHOULD JusT
FORMALIZE IT AS A STANDARD.

Source: xkcd #2116

What is a data format?

Data format can mean two different things

1. data structure or how you're storing the data in memory while you're working on it;
2. file format or the way you're storing the data in the disk.

Let’s consider this randomly generated DataFrame with various columns:

import pandas as pd
import numpy as np

n_rows = 100000

dataset = pd.DataFrame(
data={
'string': np.random.choice(('apple', 'banana', 'carrot'), size=n_rows),
'"timestamp': pd.date_range('"20130101", periods=n_rows, freq="s"),
'integer': np.random.choice(range(0,10), size=n_rows),
'float': np.random.uniform(size=n_rows),
}I
)

dataset.info()

https://xkcd.com/2116/
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/File_format

This DataFrame is structured in the tidy data format. In tidy data we have multiple columns of
data that are collected in a Pandas DataFrame, where each column represents a value of a
specific type.

In a tidy
data set: '

Each variable is saved Each observation is
in its own column saved in its own row

Let’s consider another example:

n = 1000

data_array = np.random.uniform(size=(n,n))
np.info(data_array)

Here we have a different data structure: we have a two-dimensional array of numbers. This is
different to a Pandas DataFrame as data is stored as one contiguous block instead of
individual columns. This also means that the whole array must have one data type.

3D array

2D array °
1D array i
5 |52 30|45
701 2| 9 |10 9110103
axis 0 > axis 1 >
shape: (4,) shape: (2, 3)

Source: Elegant Scipy
Now the question is: Can the data be saved to the disk without changing the data format?

For this we need a file format that can easily store our data structure.

https://github.com/elegant-scipy/elegant-scipy

O Data type vs. data structure vs. file format

. Data type: Type of a single piece of data (integer, string, float, ...).

 Data structure: How the data is organized in memory (individual columns, 2D-array,
nested dictionaries, ...).

« File format: How the data is organized when it is saved to the disk (columns of strings,
block of binary data, ...).

For example, a black and white image stored as a .png-file (file format) might be stored in

memory as an NxM array (data structure) of integers (data type) with each entry
representing the color value of the pixel.

What to look for in a file format?

When deciding which file format you should use for your program, you should remember the
following:

There is no file format that is good for every use case.
and
It is very likely, that a good format already exists for your use case.

There are, indeed, various standard file formats for various use cases:

HOW STANDARDS PRCLIFERATE:
(66 A/C CHARGERS, (HARACTER ENCODINGS, IN STANT MESSAGING, ETC)

I4?! RiDICULoLsS! SoON:]
WE NEED To DEVELOP
SITUATION: || N WVERSAL SRORD 1| SiTUATION:
THERE ARE USE CASES. \epi THERE ARE
4 COMPETING Y O) |5 COMPETING
STANDPRDS. STANDPRDS.

Source: xkcd #927.

Usually, you'll want to consider the following things when choosing a file format:

1. Is the file format good for my data structure (is it fast/space efficient/easy to use)?
2. Is everybody else / leading authorities in my field recommending a certain format?
3. Do | need a human-readable format or is it enough to work on it using code?

4. Do | want to archive / share the data or do | just want to store it while I'm working?

https://xkcd.com/927/

Pandas supports many file formats for tidy data and Numpy supports some file formats for
array data. However, there are many other file formats that can be used through other
libraries.

Table below describes some data formats:

Human Space Arbitrary Tidy Array Long term
Name: readable: efficiency: data: data: data: storage/sharing:
Pickle) ¢ X
csv X X
Feather X X X X
Parquet X
npy X X X X
HDF5 X X X
NetCDF4 X X X
JSON X X X
Excel x x X X
il X X X
. : Good
. : Ok / depends on a case

« X :Bad

A more in-depth analysis of the file formats mentioned above, can be found here.
Pros and cons

Let’s have a general look at pros and cons of some types of file formats
Binary File formats
Good things

« Can represent floating point numbers with full precision.
« Can potentially save lots of space, especially, when storing numbers.

https://pandas.pydata.org/docs/user_guide/io.html
https://numpy.org/doc/stable/reference/routines.io.html

« Data reading and writing is usually much faster than loading from text files, since the
format contains information about the data structure, and thus memory allocation can be
done more efficiently.

« More explicit specification for storing multiple data sets and metadata in the same file.

« Many binary formats allow for partial loading of the data. This makes it possible to work
with datasets that are larger than your computer’s memory.

Bad things

« Commonly requires the use of a specific library to read and write the data.
« Library specific formats can be version dependent.
« Not human readable.
« Sharing can be more difficult (requires some expertise to be able to read the data).
« Might require more documentation efforts.
Textual formats

Good things

« Human readable.
Easy to check for (structural) errors.

Supported by many tool out of the box.
Easily shared.

Bad things

« Can be slow to read and write.

« High potential to increase required disk space substantially (e.g. when storing floating
point numbers as text).

« Prone to losing precision when storing floating point numbers.

« Multi-dimensional data can be hard to represent.

« While the data format might be specified, the data structure might not be clear when
starting to read the data.

Further considerations

« The closer your stored data is to the code, the more likely it depends on the environment
you are working in. If you pickle , e.g. a generated model, you can only be sure that the
model will work as intended if you load it in an environment that has the same versions of
all libraries the model depends on.

Exercise

e Exercise

You have a model that you have been training for a while. Lets assume it’s a relatively
simple neural network (consisting of a network structure and it's associated weights).

Let’s consider 2 scenarios

A:You have a different project, that is supposed to take this model, and do some
processing with it to determine it’s efficiency after different times of training.

B: You want to publish the model and make it available to others.

What are good options to store the model in each of these scenarios?

A:

Some export into a binary format that can be easily read. E.g. pickle or a specific
export function from the library you use.

It also depends on whether you intend to make the intermediary steps available to
others. If you do, you might also want to consider storing structure and weights
separately or use a format specific for the type of model you are training to keep the
data independent of the library.

You might want to consider a more general format that is supported by many libraries,
e.g. ONNX, or a format that is specifically designed for the type of model you are
training.

You might also want to consider additionally storing the model in a way that is easily
readable by humans, to make it easier for others to understand the model.

Case study: Converting untidy data to tidy data

Many data analysis tools (like Pandas) are designed to work with tidy data, but some data is
not in a suitable format. What we have seen often in the past is people then not using the
powerful tools, but write complicated scripts that extract individual pieces from the data
each time they need to do a calculation.

As an example, let’s see how we can use country data from an example REST APl endpoint
(for more information on how to work with web APls, see this page). Let’s get the data with
the following piece of code:

import json
import requests

url = 'https://api.sampleapis.com/countries/countries'
response = requests.get(url)

countries_json = json.loads(response.content)

Let’s try to find the country with the largest population.

An example of a “questionable” way of solving this problem would be something like the
following piece of code that is written in pure Python:

max_population = 0
top_population_country = "'

for country in countries_json:
if country.get('population', 0) > max_population:
top_population_country = country['name']

max_population = country.get('population', 0)

print(top_population_country)

This is a very natural way of writing a solution for the problem, but it has major caveats:

1. We throw all of the other data out so we cannot answer any follow up questions.
2. For bigger data, this would be very slow and ineffective.
3. We have to write lots of code to do a simple thing.

Another typical solution would be something like the following code, which picks some of
the data and creates a Pandas dataframe out of it:

import pandas as pd
countries_list = []

for country in countries_json:
countries_list.append([country['name'], country.get('population',0)])

countries_df = pd.DataFrame(countries_list, columns=['name', 'population'])

print(countries_df.nlargest(1, 'population')['name'].values[0])

This solution has many of the same problems as the previous one, but now we can use
Pandas to do follow up analysis.

Better solution would be to use Pandas’ pandas.DataFrame.from_dict or
pandas.json_normalize to read the full data in:

countries_df = pd.DataFrame.from_dict(countries_json)
print(countries_df.nlargest(1, 'population')['name'].values[0])

countries_df = pd.json_normalize(countries_json)
print(countries_df.nlargest(1, 'population')['name'].values[0])

O Key points

« Convert your data to a format where it is easy to do analysis on it.
« Check the tools you're using if they have an existing feature that can help you read the
data in.

Things to remember

1. There is no file format that is good for every use case.

2. Usually, your research question determines which libraries you want to use to solve it.
Similarly, the data format you have determines file format you want to use.

3. However, if you're using a previously existing framework or tools or you work in a specific
field, you should prioritize using the formats that are used in said framework/tools/field.

4. When you're starting your project, it's a good idea to take your initial data, clean it, and
store the results in a good binary format that works as a starting point for your future
analysis. If you've written the cleaning procedure as a script, you can always reproduce it.

5. Throughout your work, you should use code to turn important data to a human-readable
format (e.g. plots, averages, pandas.DpataFrame.head()), not to keep your full datain a
human-readable format.

6. Once you've finished, you should store the data in a format that can be easily shared to
other people.

See also

« Pandas’ 10 tools
« Tidy data comparison notebook
« Array data comparison notebook

O Keypoints

« Pandas can read and write a variety of data formats.
« There are many good, standard formats, and you don’t need to create your own.
« There are plenty of other libraries dedicated to various formats.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.from_dict.html
https://pandas.pydata.org/docs/reference/api/pandas.json_normalize.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html#pandas.DataFrame.head
https://pandas.pydata.org/docs/user_guide/io.html
https://github.com/AaltoSciComp/python-for-scicomp/tree/master/extras/data-formats-comparison-tidy.ipynb
https://github.com/AaltoSciComp/python-for-scicomp/tree/master/extras/data-formats-comparison-array.ipynb

Scripts

« Why are command line programs useful, compared to Jupyter notebooks and similar?
« How to create a Python script?
« How to generalize a Python script?

O Objectives

« Learn how to streamline your Python notebooks by creating repeatable Python scripts
« Learn how to import other Python files
« Learn to parse command line arguments in Python

Why scripts?

So far we have been learning Python using Jupyter notebooks. It is very convenient: it
allowed us to experiment and prototype Python code so we may think that is more than
enough for your day to day work.

But after several weeks of hard work with Python, you may end up:

« either with 10 different notebooks (so that you can run them concurrently)
« or with a very long notebook which is becoming hardly readable!

Let’s imagine you have created 10 notebooks to run for 10 different input parameters and
now you are willing to experiment with 1000 sets of input parameters. Suppose you find a
bug in the original notebook and need to rerun everything: are you willing to re-create
manually your 1000 notebooks?

In this episode, we will learn how to automate your work using Python scripts so that
« you do not need to manually configure your notebooks to be able to run with different

parameters
« can easily run you work via other tools, such as on computing clusters.

From Jupyter notebooks to Python scripts

Save as Python script

Jupyter notebooks can be parameterized for instance using papermill. It can be an attractive
approach when you have short notebooks (to generate automatically plots/reports) but as
soon as you have more complex tasks to execute, we strongly recommend to generate

https://papermill.readthedocs.io/en/latest/

Python scripts. This will also force you to modularize your code. See CodeRefinery’s lesson
on Modular code development.

You need to convert the notebook to a Python file. Check the JupyterLab documentation for
more information. You can get a command line by (File = New Launcher = Terminal - if you
go through New Launcher, your command line will be in the directory you are currently
browsing), you can convert files in the terminal by running:

$ jupyter nbconvert --to script your_notebook_name.ipynb

If nbconvert doesn’t work, within JupyterLab, you can export any Jupyter notebook to a
Python script, but this downloads it to your own computer and then you need to copy it to a
place you are working (maybe upload it back to JupyterLab?):

File | Edit Wiew Run Kernel Tabs Settings Help

m New b ¥ | [A] Lorenz.ipynb
New Launcher Ctrl+Shift+L “ » m C » Markdown v
o Open from Path...
Open from URL... . .
Open Recent , € Lorenz Differentic
New View for Motebook | . _—
e we start, we import some preliminary
% New Console for Notebook vhich contains the actual selver and plot
Close Tab Alt+w
Close and Shut Down Motebook... Ctrl+Shift+Q ﬂfGﬂ:!‘b 1n1:|_r.19 i) i
ipywidgets import interactive, fixe
Close All Tabs .
Asciidoc gifs tial
ifferential
Save Notebook ctri+s HTML
Save Notebook As... Ctrl+Shift+s LaTex
Save All Markdown
Reload Notebook from Disk FDF
Revert Notebook to Checkpoint... Qtpdf
Qtpn gets and ex
Rename Notebook... png
Duplicate Notebook ReStructured Text £
Sowniond Executable Script ma=(0.0,50
Reveal.js Slides
Save and Export Notebook As b Webpdf
. , we see the
Workspaces b
) ibject returned by interactive isa W
Print... Ctri+P
nents:
Log Out
Shut Down 't = w.result

Seléct File (top menu bar) N IExpﬂo“rt INoté‘L;t-)ék as — Export notebook to Executable Script.
Exercises 1

gw Scripts-1

1. Download the & weather_observations.ipynb and upload them to your Jupyterlab.
The script plots the temperature data for Tapiola in Espoo. The data is originally from
rp5.kz and was slightly adjusted for this lecture.

https://coderefinery.github.io/modular-type-along/
https://coderefinery.github.io/modular-type-along/
https://jupyterlab.readthedocs.io/en/stable/user/export.html
https://jupyterlab.readthedocs.io/en/stable/_images/exporting-menu.png
https://jupyterlab.readthedocs.io/en/stable/_images/exporting-menu.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/4b858dab9366f77b3641c99adece5fd2/weather_observations.ipynb
https://rp5.kz/

Hint: Copy the URL above (right-click) and in JupyterLab, use File = Open from URL
— Paste the URL. It will both download it to the directory JupyterLab is in and open it
for you.

2. Open a terminal in Jupyter: File = New Launcher, then click “Terminal” there. (if you
do it this way, it will be in the right directory. File = New — Terminal might not be.)

3. Convert the Jupyter script to a Python script by calling:

$ jupyter nbconvert --to script weather_observations.ipynb

4. Run the script (note: you may have python3 rather than python):

$ python weather_observations.py

Command line arguments with sys.argv

We now have a Python script that is callable from the command line (e.g. for use on an HPC
system). However, this code is still not adjustable, as we still need to have a copy for each
single time range we want to plot, or need to modify our file whenever we want to just
change parameters. What we need is to allow the code to do something different based on
something outside the code itself: in this case, to plot information for different time ranges.
This can be achieved by using Pythons sys package, which provides access to arguments
given to the Python interpreter at startup in the sys.argv list. The first (i.e. sys.argv[e]
entry of this array is the script that is running, and any further argument (separated by space)
is appended to this list, like such:

$ python my_script.py A B
$ # sys.argv[1] is 'A’
$ # sys.argv[2] is 'B'

Lets see how it works: We modify the weather_observations.py script such that we allow
start and end times as well as the output file to be passed in as arguments to the function.
Open it (find the .py file from the JupyterLab file browser) and make these edits:

https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#module-sys
https://docs.python.org/3/library/sys.html#sys.argv

import sys
import pandas as pd

define the start and end time for the plot
start_date = pd.to_datetime(sys.argv[1l], dayfirst=True)
end_date = pd.to_datetime(sys.argv[2], dayfirst=True)

select the data
weather = weather[weather['Local time'].between(start_date,end_date)]

save the figure
output_file_name = sys.argv[3]
fig.savefig(output_file name)

We can try it out (see the file spring_in_tapiola.png made in the file browser):

$ python weather_observations.py 01/03/2021 31/05/2021 spring_in_tapiola.png

® Discussion

» Does it work?

« Why is this better than modifying the script every time | want it to plot data for a
different period?

« What problems do you expect when using this approach (using sys.argv)?

This approach is brittle and more robust solutions exist that allow you to fully customize
your scripts and generate help texts at the same time:

« argparse: built-in to Python, this is the one that we will show below.
« doctopt: you write the help text and this generates a parser for you.
« click: another nice library for command line interfaces - very easy to use.

Parsing command line arguments with argparse

Argparse not only gives you descriptive command line arguments, it also automatically
generates a --help option for you. To use argparse Yyou first set up a parser by calling
parser = argparse.ArgumentParser() and then you add arguments using

parser.add_argument(args) . There are two different types of arguments:

« Positional arguments
« Optional arguments

https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/argparse.html
http://docopt.org/
https://click.palletsprojects.com/
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument

Positional arguments are detected by their order, while optional arguments need to be given
with their respective flags (like --name or -n). The following example would parse a

positional argument name of type string and an optional argument date of type string

which defaults to e1/01/2000 .

import argparse

parser = argparse.ArgumentParser ()
One positional and one optional argument
parser.add_argument('name', type=str, metavar="N",
help="The name of the subject")
parser.add_argument('-d', '--date', type=string, default="01/01/2000",
help="Birth date of the subject")

args = parser.parse_args()

print(args.name + " was born on " + args.date)

If this code was in birthday.py and we would call python birthday.py --help it would show

the following message:

$ python birthday.py --help
usage: birthday.py [-h] [-d DATE] N

positional arguments:
N The name of the subject

optional arguments:
-h, --help show this help message and exit
-d DATE, --date DATE Birth date of the subject

Exercises 2

e Scripts-2

1. Take the Python script (weather_observations.py) we have written in the preceding
exercise and use argparse to specify the input (URL) and output files and allow the
start and end dates to be set.

« Hint: try not to do it all at once, but add one or two arguments, test, then add
more, and so on.

« Hint: The input and output filenames make sense as positional arguments, since
they must always be given. Input is usually first, then output.

« Hint: The start and end dates should be optional parameters with the defaults as
they are in the current script.

https://docs.python.org/3/library/argparse.html#module-argparse

2. Execute your script for a few different time intervals (e.g. from January 2019 to June
2020, or from May 2020 to October 2020). Also try using this data for Cairo:
https://raw.githubusercontent.com/AaltoSciComp/python-for-

scicomp/master/resources/data/scripts/weather_cairo.csv

import pandas as pd
import argparse

parser = argparse.ArgumentParser ()

parser.add_argument("input", type=str, help="Input data file")
parser.add_argument("output", type=str, help="Output plot file")
parser.add_argument("-s", "--start", default="01/01/2019", type=str, help="Start
date in DD/MM/YYYY format")

parser.add_argument("-e", "--end", default="16/10/2021", type=str, help="End date
in DD/MM/YYYY format")

args = parser.parse_args()

load the data
weather = pd.read_csv(args.input,comment="#")

define the start and end time for the plot
start_date=pd.to_datetime(args.start, dayfirst=True)
end_date=pd.to_datetime(args.end, dayfirst=True)

preprocess the data

weather['Local time'] = pd.to_datetime(weather['Local time'], dayfirst=True)
select the data

weather = weather[weather['Local time'].between(start_date,end_date)]

plot the data

import matplotlib.pyplot as plt

start the figure.

fig, ax = plt.subplots()
ax.plot(weather['Local time'], weather['T'])
label the axes

ax.set_xlabel("Date of observation")
ax.set_ylabel("Temperature in Celsius")
ax.set_title("Temperature Observations")

adjust the date labels, so that they look nicer
fig.autofmt_xdate()

save the figure
fig.savefig(args.output)

@ Discussion

What was the point of doing this?

Now you can do this:

$ python weather_observations.py --help

$ python weather_observations.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/scripts/weather_tapiola.csv temperature_tapiola.png
$ python weather_observations.py -s 1/12/2020 -e 31/12/2020
https://raw.githubusercontent.com/AaltoSciComp/python-for -
scicomp/master/resources/data/scripts/weather_tapiola.csv
temperature_tapiola_dec.png

$ python weather_observations.py -s 1/2/2021 -e 28/2/2021
https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/scripts/weather_tapiola.csv
temperature_tapiola_feb.png

$ python weather_observations.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/scripts/weather_cairo.csv temperature_cairo.png

« We can now process different input files without changing the script.

« We can select multiple time ranges without modifying the script.

« We can easily save these commands to know what we did.

« This way we can also loop over file patterns (using shell loops or similar) or use the
script in a workflow management system and process many files in parallel.

o By changing from sys.argv to argparse we made the script more robust against user
input errors and also got a help text (accessible via --help).

Load larger option lists using config files

In the above example we only allowed the input and output files along with start and end
dates to be selected by command line arguments. This already leads to a quite large
command line call. Now imagine, that we also want to allow the user to select more specific
information from the dataset, define specific X and Y labels, write their own title etc. Now
imagine to put all this into the command line:

$ python weather_observations.py --input
https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/scripts/weather_cairo.csv --output rain_in_tapiola.png --
xlabel "Days in June" --ylabel "Rainfall in mm" --title "Rainfall in Cairo" --
data_column RRR --start 01/06/2021 --end 30/06/2021

This is an even larger line, needs scrolling and becomes quite inconvenient to modify. Instead
of putting all of this into the command line, you could think about storing and modifying the
arguments in a config file. There are several ways, how config files can be stored. You can use
asimple parameter = value format, and parse it yourself, or you can use e.g. the Json or

vamL formats. For both parsers exist that can save you some work, and both formats also
allow you to use more complex input data, like lists, or dictionaries. We won't go into the
details of the formats, and will only give a short example using YAML here.

https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/argparse.html#module-argparse

The YAML file format can be simple or very complex allowing a large variety of data
structures to be stored. One benefit of YAML is that there is already a Python module (yaml)
available for parsing it and it directly parses numbers as numbers and text as strings, making
conversions unnecessary (the same is true for JSON with the json package).

The Python module & optionsparser.py provides a simple parser for YAML styled options
files. Similar to argparse, it takes a dict of required options, along with a dict of optional
parameters. Required arguments need to specify a type. Optional argument types are derived
from their default values.

In our example above, we could for example add optional parameters that allow the selection
of other weather data from the dataset (precipitation ...), set the labels and titles explicitly
etc.

In the YAML format, names and values are separated by : . Our above example would

therefore translate to the following YAML file:

input: https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/resources/data/scripts/weather_cairo.csv

output: rain_in_cairo.png

xlabel: Days in June

ylabel: Rainfall in mm

title: Rainfall in Cairo

data_column: RRR

start: 01/06/2021

end: 30/06/2021

Exercises 3 (optional)

g Scripts-3

1. Download the & optionsparser.py function and load it into your working folder in
Jupyterlab (Hint: in JupyterLab, File = Open from URL). Modify the previous script to
use a config file parser to read all arguments. The config file is passed in as a single
argument on the command line (using e.g. argparse or sys.argv) still needs to be
read from the command line.

2. Run your script with different config files.

The modified weather_observations.py script:

https://pyyaml.org/
https://docs.python.org/3/library/json.html#module-json
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/resources/code/scripts/optionsparser.py
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/sys.html#sys.argv

#!/usr/bin/env python
coding: utf-8

import pandas as pd
from optionsparser import get_parameters
import argparse

Lets start reading our confg file. we'll use argparse to get the config file.
parser = argparse.ArgumentParser ()
parser.add_argument('input', type=str,
help="Config File name ")
args = parser.parse_args()

Set optional parameters with default values and required parameter values with
their type

defaults = {
"xlabel" : "Date of observation",
"title" : "Weather Observations",
"start" : "01/06/2021",
"end" : "01/10/2021",
"output" : "weather.png",
"ylabel" : "Temperature in Celsius",
"data_column" : "T",
}
required = {
"input" : str
}

now, parse the config file
parameters = get_parameters(args.input, required, defaults)

load the data
weather = pd.read_csv(parameters.input,comment="#")

obtain start and end date
start_date=pd.to_datetime(parameters.start, dayfirst=True)
end_date=pd.to_datetime(parameters.end, dayfirst=True)

Data preprocessing

weather['Local time'] = pd.to_datetime(weather['Local time'], dayfirst=True)
select the data

weather = weather[weather['Local time'].between(start_date,end_date)]

Data plotting

import matplotlib.pyplot as plt

start the figure.

fig, ax = plt.subplots()
ax.plot(weather['Local time'], weather['T'])
label the axes

ax.set_xlabel("Date of observation")
ax.set_ylabel("Temperature in Celsius")
ax.set_title("Temperature Observations")

adjust the date labels, so that they look nicer
fig.autofmt_xdate()

save the figure
fig.savefig(parameters.output)

What did this config file parser get us? Now, we have separated the code from the
configuration. We could save all the configuration in version control - separately and have
one script that runs them. If done right, our work could be much more reproducible and
understandable.

O Further reading

« Linking Jupyterlab notebooks to python scripts (making linking .py - and .ipynb -files
easier) using jupytext

« The wikipedia page about YAML contains a lot of additional information on the YAML
syntax.

» The Coderefinery Lesson about reproducible research can give additional information
about good coding practices and workflow automation.

« CodeRefinery’s lesson on Modular code development

Profiling

O Objectives

« Understand when improving code performance is worth the time and effort.
« Knowing how to find performance bottlenecks in Python code.
o Try scalene as one of many tools to profile Python code.

Instructor note

« Discussion: 20 min
o Exercise: 20 min

Should we even optimize the code?

Classic quote to keep in mind: “Premature optimization is the root of all evil.” [Donald Knuth]

® Discussion

It is important to ask ourselves whether it is worth it.

« Isit worth spending e.g. 2 days to make a program run 20% faster?
« Is it worth optimizing the code so that it spends 90% less memory?

Depends. What does it depend on?

https://jupytext.readthedocs.io/en/latest/paired-notebooks.html
https://en.wikipedia.org/wiki/YAML
https://coderefinery.github.io/reproducible-research/
https://coderefinery.github.io/modular-type-along/

Measure instead of guessing

Before doing code surgery to optimize the run time or lower the memory usage, we should
measure where the bottlenecks are. This is called profiling.

Analogy: Medical doctors don't start surgery based on guessing. They first measure (X-ray,
MR, ...) to know precisely where the problem is.

Not only programming beginners can otherwise guess wrong, but also experienced
programmers can be surprised by the results of profiling.

One of the simplest tools is to insert timers

Below we will list some tools that can be used to profile Python code. But even without
these tools you can find time-consuming parts of your code by inserting timers:

import time

o,
code before the function

start = time.time()
result = some_function()
print(f"some_function took {time.time() - start} seconds")

code after the function
o,

Many tools exist

The list below here is probably not complete, but it gives an overview of the different tools
available for profiling Python code.

CPU profilers:

« cProfile and profile
« line_profiler

* py-spy

» Yappi

o pyinstrument

» Perfetto

Memory profilers:

https://docs.python.org/3/library/profile.html
https://kernprof.readthedocs.io/
https://github.com/benfred/py-spy
https://github.com/sumerc/yappi
https://pyinstrument.readthedocs.io/
https://perfetto.dev/docs/analysis/trace-processor-python

memory_profiler (not actively maintained)

Pympler
tracemalloc
guppy/heapy

Both CPU and memory:
« Scalene

In the exercise below, we will use Scalene to profile a Python program. Scalene is a sampling
profiler that can profile CPU, memory, and GPU usage of Python.

Tracing profilers vs. sampling profilers

Tracing profilers record every function call and event in the program, logging the exact
sequence and duration of events.

« Pros:
o Provides detailed information on the program’s execution.
o Deterministic: Captures exact call sequences and timings.
« Cons:
o Higher overhead, slowing down the program.
o Can generate larger amount of data.

Sampling profilers periodically samples the program’s state (where it is and how much
memory is used), providing a statistical view of where time is spent.

 Pros:
o Lower overhead, as it doesn't track every event.
o Scales better with larger programs.
« Cons:
o Less precise, potentially missing infrequent or short calls.
o Provides an approximation rather than exact timing.

& Analogy: Imagine we want to optimize the London Underground (subway) system

We wish to detect bottlenecks in the system to improve the service and for this we have
asked few passengers to help us by tracking their journey.

« Tracing: We follow every train and passenger, recording every stop and delay. When
passengers enter and exit the train, we record the exact time and location.

« Sampling: Every 5 minutes the phone notifies the passenger to note down their
current location. We then use this information to estimate the most crowded stations
and trains.

https://pypi.org/project/memory-profiler/
https://pympler.readthedocs.io/
https://docs.python.org/3/library/tracemalloc.html
https://github.com/zhuyifei1999/guppy3/
https://github.com/plasma-umass/scalene

Choosing the right system size

Sometimes we can configure the system size (for instance the time step in a simulation or the
number of time steps or the matrix dimensions) to make the program finish sooner.

For profiling, we should choose a system size that is representative of the real-world use
case. If we profile a program with a small input size, we might not see the same bottlenecks
as when running the program with a larger input size.

Often, when we scale up the system size, or scale the number of processors, new bottlenecks
might appear which we didn’t see before. This brings us back to: “measure instead of
guessing”.

Exercises

g Exercise: Practicing profiling

In this exercise we will use the Scalene profiler to find out where most of the time is spent
and most of the memory is used in a given code example.

Please try to go through the exercise in the following steps:

1. Make sure scalene is installed in your environment (if you have followed this course
from the start and installed the recommended software environment, then it is).

2. Download Leo Tolstoy’s “War and Peace” from the following link (the text is provided
by Project Gutenberg): https:/www.gutenberg.org/cache/epub/2600/pg2600.txt
(right-click and “save as” to download the file and save it as “book.txt”).

3. Before you run the profiler, try to predict in which function the code (the example
code is below) will spend most of the time and in which function it will use most of
the memory.

4. Save the example code as example.py and runthe scalene profiler on the following
code example and browse the generated HTML report to find out where most of the
time is spent and where most of the memory is used:

$ scalene example.py

Alternatively you can do this (and then open the generated file in a browser):

$ scalene example.py --html > profile.html

You can find an example of the generated HTML report in the solution below.

5. Does the result match your prediction? Can you explain the results?

https://www.gutenberg.org/
https://www.gutenberg.org/cache/epub/2600/pg2600.txt

Example code (example.py):

mmin

The code below reads a text file and counts the number of unique words in it
(case-insensitive).

min

import re

def count_unique_wordsi(file_path: str) -> int:
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
words = re.findall(r"\b\w+\b", text.lower())
return len(set(words))

def count_unique_words2(file_path: str) -> int:
unique_words = []
with open(file_path, "r", encoding="utf-8") as file:
for line in file:
words = re.findall(r"\b\w+\b", line.lower())
for word in words:
if word not in unique_words:
unique_words.append(word)
return len(unique_words)

def count_unique_words3(file_path: str) -> int:
unique_words = set()
with open(file_path, "r", encoding="utf-8") as file:
for line in file:
words = re.findall(r"\b\w+\b", line.lower())
for word in words:
unique_words.add(word)
return len(unique_words)

def main():
book.txt is downloaded from
https://www.gutenberg.org/cache/epub/2600/pg2600. txt
_result = count_unique_wordsi("book.txt")
_result = count_unique_words2("book.txt")
_result = count_unique_words3("book.txt")

if __name__ == "__main__":
main()

Memory Usage: smmeemmllles. (max: 43.134 MB, growth rate: 0%)
example.py: % of time = 100.00% (19.611s) out of 19.61ls.

Time Memory _— Copy
Line |Python |native |system |Python |peak timeline/% (MB/s) |example.py
1 import re
2
3
4 def count unique wordsl(file path: str) -> int:
5 with open(file path, "r", encoding="utf-8") as file:
6 1% 100% 13M (_ 18% text = file.read()
7 1% 100% 30M |Lamll 82% words = re.findall(r"\b\w+\b", text.lower())
8 return len(set(words))
9
10
11 def count unique words2(file_path: str) -> int:
12 unique_words =
13 with open(file_path, "r", encoding="utf-8") as file:
14 for line in file:
15 3% words = re.findall(r"\b\w+\b", line.lower())
16 for word in words:
17 73% if word not in unique_words:
18 16% unique_words.append(word)
19 return len(unique_words)
20
21
22 def count_unique words3(file_path: str) -> int:
23 unique_words = set()
24 with open(file_path, "r", encoding="utf-8") as file:
25 for line in file:
26 2% words = re.findall(r"\b\w+\b", line.lower())
27 for word in words:
28 unique words.add(word)
29 return len(unique words)
30
31
32 def main():
33 _result = count unique wordsl("book.txt")
34 _result = count unique words2("book.txt")
35 _result = count unique words3("book.txt")
36
37
38 if name == " main
39 main()
40
function summary for example.py
4 2% 2% 100% oM | 100% count unique wordsl
11 92% 1% count unique words2
22 3% count unique words3

Top AVERAGE memory consumption, by line:

(1) 7:

Top PEAK memory consumption, by line:
(1) 7:

(2) 6: 13 MB

generated by the scalene profiler

Result of the profiling run for the above code example. You can click on the image to make

it larger.

Results:

e Most timeis spent in the count_unique_words2 function.

o Most memory is used in the count_unique_words1 function.

Explanation:

e The count_unique_words2 function is the slowest because it uses a list to store
unique words and checks if a word is already in the list before adding it. Checking
whether a list contains an element might require traversing the whole list, which is
an O(n) operation. As the list grows in size, the lookup time increases with the size
of the list.

« The count_unique_words1 and count_unique_words3 functions are faster because
they use a set to store unique words. Checking whether a set contains an element
is an O(1) operation.

e The count_unique_words1 function uses the most memory because it creates a list
of all words in the text file and then creates a set from that list.

o The count_unique_words3 function uses less memory because it traverses the text

file line by line instead of reading the whole file into memory.

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/exercise1.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/exercise1.png

What we can learn from this exercise:

« When processing large files, it can be good to read them line by line or in batches
instead of reading the whole file into memory.

« Itis good to get an overview over standard data structures and their advantages
and disadvantages (e.g. adding an element to a list is fast but checking whether it
already contains the element can be slow).

Additional resources

« Python performance workshop (by ENCCS)
Productivity tools

O Objectives

« Know about tools that can help you spot code problems and help you following a
consistent code style without you having to do it manually.
» Get an overview of Al-based tools and how they can help you writing code.

Instructor note

« Demo/discussion: 20 min

Linters and formatters

Linter: Tool that analyzes source code to detect potential errors, unused imports, unused
variables, code style violations, and to improve readability.

« Popular linters:
o Autoflake
o Flake8
o Pyflakes
o Pycodestyle
o Pylint
o Ruff

Formatter: Tool that automatically formats your code to a consistent style, for instance
following PEP 8.

« Popular formatters:
o Black
o YAPF
o Ruff

https://enccs.github.io/python-perf/profile/
https://pypi.org/project/autoflake/
https://flake8.pycqa.org/
https://pypi.org/project/pyflakes/
https://pycodestyle.pycqa.org/
https://pylint.readthedocs.io/
https://docs.astral.sh/ruff/
https://peps.python.org/pep-0008/
https://black.readthedocs.io/
https://github.com/google/yapf
https://docs.astral.sh/ruff/

In this course we will focus on Ruff since it can do both checking and formatting and you
don’t have to switch between multiple tools.

® Linters and formatters can be configured to your liking

These tools typically have good defaults. But if you don't like the defaults, you can
configure what they should ignore or how they should format or not format.

Examples

This code example (which we possibly recognize from the previous section about Profiling
and Tracing) has few problems (highlighted):

import re
import requests

def count_unique_words(file_path: str) -> int:
unique_words = set()
forgotten_variable = 13
with open(file_path, "r", encoding="utf-8") as file:
for line in file:
words = re.findall(r"\b\w+\b", line.lower()))
for word in words:
unique_words.add(word)
return len(unique_words)

Please try whether you can locate these problems using Ruff:

$ ruff check

Next, let us try to auto-format a code example which is badly formatted and also difficult to
read:

Badly formatted Auto-formatted

import re
def count_unique_words (file_path : str)->int:
unique_words=set()
with open(file_path,"r", encoding="utf-8") as file:
for line in file:
words=re.findall(r"\b\w+\b",1line.lower())
for word in words:
unique_words.add(word)
return len(unique_words)

https://docs.astral.sh/ruff/
https://docs.python.org/3/c-api/init.html#profiling
https://docs.python.org/3/c-api/init.html#profiling

Type checking

A (static) type checker is a tool that checks whether the types of variables in your code
match the types that you have specified.

« Tools:

o Mypy
o Pyright (Microsoft)
o Pyre (Meta)

Integration with editors

Many/most of the above tools can be integrated with your editor. For instance, you can
configure your editor to automatically format your code when you save the file. However,
this only makes sense when all team members agree to follow the same style, otherwise
saving and possibly committing changes to version control will show up changes to code
written by others which you possibly didn’t intend to make.

Integration with Jupyter notebooks

It is possible to automatically format your code in Jupyter notebooks! For this to work you
need the following three dependencies installed:

e jupyterlab-code-formatter
e black

e isort

More information and a screen-cast of how this works can be found at https:/jupyterlab-
code-formatter.readthedocs.io/.

Integration with version control

If you use version control and like to have your code checked or formatted before you
commit the change, you can use tools like pre-commit.

Al-assisted coding
We can use Al as an assistant/apprentice:
« Code completion

« Write a test based on an implementation
« Write an implementation based on a test

https://mypy.readthedocs.io/
https://github.com/microsoft/pyright
https://pyre-check.org/
https://jupyterlab-code-formatter.readthedocs.io/
https://jupyterlab-code-formatter.readthedocs.io/
https://pre-commit.com/

Or we can use Al as a mentor:

« Explain a concept
« Improve code
« Show a different (possibly better) way of implementing the same thing

What is the simplest way in Python to print an
error message and stop the code?

The simplest way in Python to print an error message and stop the code
Is by using the sys.exit() function from the sys module or raising an

exception. Here are two common methods:

1. Using sys.exit():

python (¥ Copy code
print{
sys.exit(1)

Example for using a chat-based Al tool.

[bast@banichi:~/course]$]

Example for using Al to complete code in an editor.

O Al tools open up a box of questions

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/chatgpt.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/chatgpt.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/code-completion.gif
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/code-completion.gif

o Legal

« Ethical

« Privacy

« Lock-in/ monopolies

 Lack of diversity

« Will we still need to learn programming?

« How will it affect learning and teaching programming?

SciPy

Questions

« When you need more advanced mathematical functions, where do you look?

O Objectives

« Understand that SciPy exists and what kinds of things it has.

« Understand the importance of using external libraries and how to use them.
« Understand the purpose of wrapping existing C/Fortran code.

- Non-objective: know details of everything (or anything) in SciPy.

= See also

« Main article: SciPy documentation

SciPy is a library that builds on top of NumPy. It contains a lot of interfaces to battle-tested
numerical routines written in Fortran or C, as well as python implementations of many
common algorithms.

What's in SciPy?
Briefly, it contains functionality for

« Special functions (Bessel, Gamma, etc.)

« Numerical integration

« Optimization

« Interpolation

« Fast Fourier Transform (FFT)

« Signal processing

o Linear algebra (more complete than in NumPy)

« Sparse matrices

« Statistics

« More I/O routine, e.g. Matrix Market format for sparse matrices, MATLAB files (.mat), etc.

https://docs.scipy.org/doc/scipy/reference/

Many (most?) of these are not written specifically for SciPy, but use the best available open
source C or Fortran libraries. Thus, you get the best of Python and the best of compiled
languages.

Most functions are documented ridiculously well from a scientific standpoint: you aren't just
using some unknown function, but have a full scientific description and citation to the
method and implementation.

Exercises: use SciPy

These exercises do not exist because you might need these functions someday. They are
because you will need to read documentation and understand documentation of an an external
library eventually.

1: Numerical integration

¢w Exercise

Do the following exercise or read the documentation and understand the relevant
functions of SciPy:

Define a function of one variable and using scipy.integrate.quad calculate the integral of
your function in the interval [0.0, 4.0] . Then vary the interval and also modify the

function and check whether scipy can integrate it.

from scipy import integrate

def myfunction(x):
you need to define result
return result

integral = integrate.quad(myfunction, 0.0, 4.0)
print(integral)

guad uses the Fortran library QUADPACK, which one can assume is pretty good. You can
also see a whole lot of scientific information about the function on the docs page -
including the scientific names of the methods used.

2: Sparse matrices

za Exercise

Do the following exercise or read the documentation and understand the relevant
functions of SciPy:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad

Use the SciPy sparse matrix functionality to create a random sparse matrix with a
probability of non-zero elements of 0.05 and size 10000 x 10000. The use the SciPy
sparse linear algebra support to calculate the matrix-vector product of the sparse matrix
you just created and a random vector. Use the %timeit macro to measure how long it
takes. Does the optional format argument when you create the sparse matrix make a

difference?

Then, compare to how long it takes if you'd instead first convert the sparse matrix to a
normal NumPy dense array, and use the NumPy dot method to calculate the matrix-

vector product.

Can you figure out a quick rule of thumb when it’s worth using a sparse matrix
representation vs. a dense representation?

The basic code to do the test is:

import numpy
import scipy.sparse

vector = numpy.random.random(10000)
matrix = scipy.sparse.rand(10000, 10000, density=.05, format='csc')

We time this line
matrix.dot(vector)

From the top of the spare matrix module documentation, we can see there are a variety of
different available sparse matrix types: bsr , coo, csr, csc, etc. These each represent

a different way of storing the matrices.

It seems that csr and csc arefairly fast. 1i1 and dok are slow but it says that these

are good for creating matrices with random insertions.

For example, csr takes 7ms, 1i1 42ms, dok 1600ms, and converting to a non-sparse

array matrix.toarray() and multiplying takes 64ms on one particular computer.

This code allows us to time the performance at different densities. It seems that with the
csr format, sparse is better below densities of around .4 to .5:

..code-block:

https://docs.scipy.org/doc/scipy/reference/sparse.html

for density in [.01, .05, .1, .2, .3, .4, .5]:
matrix = scipy.sparse.rand(10000, 10000, density=density, format='csr')
time_sparse = timeit.timeit('matrix.dot(vector)', number=10, globals=globals())
matrix2 = matrix.toarray()
time_full = timeit.timeit('matrix2.dot(vector)', number=10, globals=globals())
print(f"{density} {time_sparse:.3f} {time_full:.3f}")

See also

+ SciPy general introduction
+ SciPy documentation

O Keypoints

« When you need advance math or scientific functions, let’s just admit it: you do a web
search first.

« But when you see something in SciPy come up, you know your solutions are in good
hands.

Library ecosystem

Questions

« What happens when you need some method beyond what we discuss in this course,
what is available?
« How do you decide what to build on for your work?

O Objectives

« Know of some other available packages, but don’t necessarily know how to use them.
« Be able to evaluate what you should reuse and what you should develop yourself.

You can't do everything yourself. In fact, once we heard a quote such as this:

When you are a student, you are expected to do everything yourself, and that is how you
are evaluated. When you become a researcher, you have to be able to reuse what others
have done. We don’t have much practice in doing this. - A student

In this lesson, we'll talk about the broader ecosystem in Python: all the resources you have
available to you. Perhaps we can even classify this into two types:

« Well-maintained libraries that are used by many others.
« A wide variety of public code that might work but isn't necessarily well-maintained (for
example, code from articles).

https://docs.scipy.org/doc/scipy/tutorial/general.html
https://docs.scipy.org/doc/scipy/reference/

We'll start with the first then go to the second.

Glossary

Library
A collection of code used by a program.
Package

A library that has been made easily installable and reusable. Often published on public
repositories such as the Python Package Index

Dependency

A requirement of another program, not included in that program.

The Python/SciPy ecosystem

This section is nothing more than a tour of what exists in Python. You aren’t expected to
particularly remember any of these right now, but searching for these repositories is a
starting point of a lot of future work.

The “core” packages could be considered. Many other packages build on these, and others
that try to do similar things often try to conform to their interfaces (especially numpy):

« Python

« Numpy - arrays, everything builds on this

« Scipy - scientific functions (not necessarily a lot builds on this)
« matplotlib - plotting, many other plotting tools build on this

« pandas - data structures

« IPython / Jupyter: interactive work

Core numerics libraries

« numpy - Arrays and array math.
« scipy - Software for math, science, and engineering.

Plotting

« matplotlib - Base plotting package, somewhat low level but almost everything builds on it.
« seaborn - Higher level plotting interface; statistical graphics.

« Vega-Altair - Declarative Python plotting.

« mayavi - 3D plotting

« Plotly - Big graphing library.

Data analysis and other important core packages

https://pypi.python.org/
https://www.scipy.org/about/
https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/reference/
https://matplotlib.org/
https://seaborn.pydata.org/
https://altair-viz.github.io/
https://docs.enthought.com/mayavi/mayavi/
https://plotly.com/python/

pandas - Columnar data analysi.

polars <https://pola.rs/> - Alternative to pandas that uses similar API, but is re-imagined for
more speed.

Vaex - Alternative for pandas that uses similar API for lazy-loading and processing huge
DataFrames.

Dask - Alternative to Pandas that uses similar APl and can do analysis in parallel.
xarrray - Framework for working with mutli-dimensional arrays.

statsmodels - Statistical models and tests.

SymPy - Symbolic math.

networkx - Graph and network analysis.

graph-tool - Graph and network analysis toolkit implemented in C++.

Interactive computing and human interface

Interactive computing
o |Python - Nicer interactive interpreter
o Jupyter - Web-based interface to IPython and other languages (includes projects such
as jupyter notebook, lab, hub, ...)
Testing
o pytest - Automated testing interface
Documentation
o Sphinx - Documentation generator (also used for this lesson...)
Development environments
o Spyder - Interactive Python development environment.
o Visual Studio Code - Microsoft’s flagship code editor.
o PyCharm - JetBrains's Python IDE.
Binder - load any git repository in Jupyter automatically, good for reproducible research

Data format support and data ingestion

pillow - Image manipulation. The original PIL is no longer maintained, the new “Pillow” is a
drop-in replacement.
h5py and PyTables - Interfaces to the HDF5 file format.

Speeding up code and parallelism

MPI for Python (mpi4py) - Message Passing Interface (MPI) in Python for parallelizing
jobs.

cython - easily make C extensions for Python, also interface to C libraries

numba - just in time compiling of functions for speed-up

PyPy - Python written in Python so that it can internally optimize more.

Dask - Distributed array data structure for distributed computation

Joblib - Easy embarrassingly parallel computing

IPyParallel - Easy parallel task engine.

numexpr - Fast evaluation of array expressions by automatically compiling the arithmetic.

https://pandas.pydata.org/docs/user_guide/
https://vaex.io/docs/index.html
https://www.dask.org/
https://docs.xarray.dev/en/stable/
https://www.statsmodels.org/stable/
https://www.sympy.org/
https://networkx.org/
https://graph-tool.skewed.de/
https://ipython.org/
https://jupyter.org/
https://docs.pytest.org/
https://www.sphinx-doc.org/
https://www.spyder-ide.org/
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://mybinder.org/
https://python-pillow.org/
https://www.h5py.org/
https://www.pytables.org/
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://mpi4py.readthedocs.io/en/stable/
https://cython.org/
https://numba.pydata.org/
https://www.pypy.org/
https://www.dask.org/
https://joblib.readthedocs.io/
https://ipyparallel.readthedocs.io/
https://numexpr.readthedocs.io/

Machine learning

« nltk - Natural language processing toolkit.
« scikit-learn - Traditional machine learning toolkit.
« xgboost - Toolkit for gradient boosting algorithms.

Deep learning

« tensorflow - Deep learning library by Google.

« pytorch - Currently the most popular deep learning library.

 keras - Simple libary for doing deep learning.

« huggingface - Ecosystem for sharing and running deep learning models and datasets.
Incluses packages like transformers , datasets , accelerate , etc.

 jax - Google’s Python library for running NumPy and automatic differentiation on GPUs.

« flax - Neural network framework built on Jax.

« equinox - Another neural network framework built on Jax.

o DeepSpeed - Algorithms for running massive scale trainings. Included in many of the
frameworks.

« PyTorch Lightning - Framework for creating and training PyTorch models.

« Tensorboard <https://www.tensorflow.org/tensorboard/> - Tool for visualizing model training
on a web page.

Other packages for special cases

« dateutil and pytz - Date arithmetic and handling, timezone database and conversion.
Connecting Python to other languages

As we discussed with Scipy, very many of the above packages aren’t written in Python: they
are written in some other language and have a Python interface. Python is written in C, and
thus has great C interfaces. This contributes to two things:

« Extending Python by writing your own modules in C.
o It's actually common to first have (or write) an analysis package in C or C++, then make
the Python interface. Then it can be supported by other languages, too.
o Or one starts an analysis package in Python, and slowly moves bits of it to C over time
as there is need.
« Embedding Python, where you have another primary application that uses Python under
the hood as an internal scripting language.

These features aren’t exactly unique to Python, but Python does support them very well.
Read more: Extending and embedding Python.

Tools for interfacing with other languages

These days, one rarely directly extends the Python interpreter, but uses

https://www.nltk.org/
https://scikit-learn.org/
https://xgboost.readthedocs.io/en/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://huggingface.co/
https://jax.readthedocs.io/en/latest/index.html
https://flax.readthedocs.io/en/latest/
https://docs.kidger.site/equinox/
https://www.deepspeed.ai/
https://lightning.ai/docs/pytorch/stable/
https://dateutil.readthedocs.io/
https://pythonhosted.org/pytz/
https://docs.python.org/extending/index.html

« cffiand ctypes - interface to C and compatible libraries

« cython - easily make C extensions for Python, also interface to C libraries
« f2py - interface to Fortran code

« swig - connect to a variety of programming languages.

e Boost.python -Another Python/C++ interface

« TODO: Julia modules for Python?

Evaluating Python packages for reuse

Above, we talked about well-maintained mainstream packages. Do you trust random code
you find online (for example included in a paper)?

Especially consider scientific results, which have to be correct. Still, you also can’t build
everything yourself, so you have to carefully evaluate the situation.

Below are some things to consider:

« Are there releases? Have they been going on for a while?

« Arereleases installable without copy-paste?

« Are dependencies handled well?

« Does the code randomly change, so that it no longer works with your code. Is this
relevant?

« Is there good documentation, that not just tells how to use it but how it works?

« Is there automated testing? What's your evaluation of the risk of undetectable scientific
errors?

« Is there a community, or is it one person? Is it backed by some organization? Does it have
a permanent home?

o Isitis a public hosting site (GitLab, GitHub, Bitbucket, etc) where a community could
form?

« Do others post issues and make contributions? Are these issues dealt with in a timely
manner? Can you search past bug reports?

« Is the software citeable?

Is your work reuseable?

Every small project you do contributes a little bit to the Python and SciPy ecosystem. This
course has sort of started you on that path, and a CodeRefinery workshop will make sure you
have the tools to produce high-quality, reusable code.

What's next?

« The CodeRefinery workshop mentioned above will prepare you for others to reuse your
code and for you to contribute to other code.

o The upcoming Dependency management lesson will teach you how to record and manage
dependencies so that anyone can seamlessly reuse your code.

https://cffi.readthedocs.io/
https://docs.python.org/3/library/ctypes.html
https://cython.org/
https://numpy.org/doc/stable/f2py/
https://swig.org/
https://coderefinery.org/
https://coderefinery.org/

Exercises

g Libraries 1.1: Libraries in your work

What libraries do you use in your work? What have you made, which you could have
reused from some other source. What have you used from some other source that you
wished you had re-created?

Discuss in your groups or HackMD.

v Libraries 1.1

... iIs there anything to say here?

g Libraries 1.2: Evaluating packages

Below are some links to some packages, both public and made by the authors of this
lesson. Evaluate them, considering “would | use this in my project?”

a. https:/github.com/networkx/networkx/

b. some code on webpage in a paper’s footnote
c. https:/github.com/rkdarst/pcd

d. https:/github.com/dftlibs/numgrid

e. https:/github.com/rkdarst/dynbench

f. https:/vpython.org/

v Libraries 1.2

a. networkx: This seems to be a relatively large, active project using best practices.
Probably usable.

b. | would probably use it if | had to, but would prefer not to.

c. This (written by one of the authors of this lesson) has no documenting, no community;,
no best practices, and is very old. Probably not a good idea to try to use it

d. This project uses best practices, but doesn’t seem to have a big community. It’s
probably fine to use, but who knows if it will be maintained 10 years from now. It
does have automated tests via Github Actions (.github/workflows and the green
checks), so the authors have put some work into making it correct.

e. This (also written by one of the authors) looks like it was made for a paper of some
sort. It has some minimal documentation, but still is missing many best practices and is
clearly not maintained anymore (look at the ancient pull request). Probably not a good
idea to use unless you have to.

f. This project has a pretty website, and some information. But seems to not be using
best practices of an open repository, and custom locations which could disappear at
any time.

https://github.com/networkx/networkx/
https://github.com/rkdarst/pcd
https://github.com/dftlibs/numgrid
https://github.com/rkdarst/dynbench
https://vpython.org/

You notice that several of the older projects here were written by one of the authors of
this lesson. It goes to show that everyone starts somewhere and improves over time -
don't feel bad if your work isn’t perfect, as long as you keep trying to get better!

See also

 Topical Software in the SciPy ecosystem - relatively detailed (but not comprehensive) list
of projects

O Keypoints

« Almost everything you need can already be found, except your incremental work.
« When do you build on that other work, and when do you create things yourself?

Dependency management

Questions

« Do you expect your code to work in one year? Five? What if it uses numpy or
tensorflow Or random-github-package ?
« How can my collaborators easily install my code with all the necessary dependencies?
« How can | make it easy for my others (and me in future) to reproduce my results?
« How can | work on two (or more) projects with different and conflicting
dependencies?

O Objectives

« Learn how to record dependencies

« Be able to communicate the dependencies as part of a report/thesis/publication
« Learn how to use isolated environments for different projects

« Simplify the use and reuse of scripts and projects

How do you track dependencies of your project?

« Dependency: Reliance on a external component. In this case, a separately installed
software package such as numpy .

Exercise 1

s Dependencies-1: Discuss dependency management (5 min)

Please discuss and answer via collaborative document the following questions:

« How do you install Python packages (libraries) that you use in your work? From PyPI
using pip? From other places using pip? Using conda?

https://new.scipy.org/topical-software.html

How do you track/record the dependencies? Do you write them into a file or
README? Into requirements.txt OrF environment.yml ?

If you track dependencies in a file, why do you do this?

Have you ever experienced that a project needed a different version of a Python
library than the one on your computer? If yes, how did you solve it?

PyPI (The Python Package Index) and conda ecosystem

PyPI (The Python Package Index) and conda are popular packaging/dependency management

tools:

« When you run pip install you typically install from PyPI, but you can also pip install

from a GitHub repository and similar.

« When you run conda install Yyou typically install from Anaconda Cloud where there are

conda channels maintained by Anaconda Inc. and by various communities.

Why are there two ecosystems?

O PyPI

Installation tool: pip

Summary: PyPl is traditionally used for Python-only packages or for Python interfaces
to external libraries. There are also packages that have bundled external libraries (such
as numpy).

Amount of packages: Huge number. Old versions are supported for a long time.

How libraries are handled: If your code depends on external libraries or tools, these
things need to be either included in the pip-package or provided via some other
installation system (like operating system installer or manual installation).

Pros:

o Easy to use
o Package creation is easy

Cons:

o Installing packages that need external libraries can be complicated

Installation tool: conda or mamba

Summary: Conda aims to be a more general package distribution tool and it tries to
provide not only the Python packages, but also libraries and tools needed by the
Python packages. Most scientific software written in Python uses external libraries to
speed up calculations and installing these libraries can often become complicated
without conda.

https://pypi.org/
https://anaconda.org/

Amount of packages: Curated list of packages in defaults-channel, huge number in
community managed channels. Other packages can be installed via pip.

How libraries are handled: Required libraries are installed as separate conda packages.
Pros:

o Quite easy to use
o Easier to manage packages that need external libraries

Cons:

o Package creation is harder

Conda ecosystem explained

Anaconda has recently changed its licensing terms, which affects its use in a professional
setting. This caused uproar among academia and Anaconda modified their position in this
article.

Main points of the article are:

« conda (installation tool) and community channels (e.g. conda-forge) are free to use.

« Anaconda repository and Anaconda’s channels in the community repository are free
for universities and companies with fewer than 200 employees. Non-university
research institutions and national laboratories need licenses.

« Miniconda is free, when it does not download Anaconda’s packages.

« Miniforge is not related to Anaconda, so it is free.

For ease of use on sharing environment files, we recommend using Miniforge to create
the environments and using conda-forge as the main channel that provides software.

« Package repositories:

o Anaconda Community Repository (anaconda.org) aka. Anaconda Cloud is a package
cloud maintained by Anaconda Inc. It is a repository that houses mirrors of Anaconda’s
channels and community maintained channels.

o Anaconda Repository (repo.anaconda.com) houses Anaconda’s own proprietary
software channels.

« Major package channels:

o Anaconda’s proprietary channels: main, r, msys2 and anaconda . These are

sometimes called defaults .

o conda-forge is the largest open source community channel. It has over 27,000
packages that include open-source versions of packages in Anaconda’s channels.
« Package distributions and installers:
o Anaconda is a distribution of conda packages made by Anaconda Inc.. When using
Anaconda remember to check that your situation abides with their licensing terms.

https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://anaconda.org/
https://repo.anaconda.com/
https://conda-forge.org/
https://www.anaconda.com/

o Miniconda is a minimal installer maintained by Anaconda Inc. that has conda and uses
Anaconda’s channels by default. Check licensing terms when using these packages.

o Miniforge is an open-source Miniconda replacement that uses conda-forge as the
default channel. Contains mamba as well.

o micromamba is a tiny stand-alone version of the mamba package manager written in
C++. It can be used to create and manage environments without installing base-
environment and Python. It is very useful if you want to automate environment
creation or want a more lightweight tool.

« Package managers:

o conda is a package and environment management system used by Anaconda. It is an
open source project maintained by Anaconda Inc..

o mamba is a drop in replacement for conda. It used be much faster than conda due to
better dependency solver but nowadays conda also uses the same solver. It still has
some Ul improvements.

Exercise 2

Dependencies-2: Package language detective (5 min)

Think about the following sentences:

1. Yes, you can install my package with pip from GitHub.
2. | forgot to specify my channels, so my packages came from the defaults.
3. I have a Miniforge installation and | use mamba to create my environments.

What hidden information is given in these sentences?

1. The package is provided as a pip package. However, it is most likely not uploaded
to PyPl as it needs to be installed from a repository.

2. In this case the person saying the sentence is most likely using Anaconda or
Miniconda because these tools use the defaults -channel as the default channel.
They probably meant to install software from conda-forge, but forgot to specify
the channel.

3. Miniforge uses conda-forge as the default channel. So unless some other channel
has been specified, packages installed with these tools come from conda-forge as
well.

Python environments

An environment is a basically a folder that contains a Python interpreter and other Python
packages in a folder structure similar to the operating system’s folder structure.

https://conda.io/miniconda.html
https://github.com/conda-forge/miniforge
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://conda.io/
https://mamba.readthedocs.io/en/latest/index.html
https://conda.org/blog/2023-11-06-conda-23-10-0-release/

These environments can be created by the venv-module in base Python, by a pip package
called virtualenv or by conda/mamba.

Using these environments is highly recommended because they solve the following problems:

« Installing environments won't modify system packages.

« You can install specific versions of packages into them.

« You can create an environment for each project and you won't encounter any problems if
different projects require different versions of packages.

« If you make some mistake and install something you did not want or need, you can
remove the environment and create a new one.

« Others can replicate your environment by reusing the same specification that you used to
create the environment.

Creating Python environments

Creating conda environment from environment.yml
Creating virtual environment from requirements.txt
Record channels and packages you need to a file called environment.yml :

name: my-environment
channels:

- conda-forge
dependencies:

- python

- numpy

- matplotlib

- pandas

The name describes the name of the environment, channels -list tells which channels
should be search for packages (channel priority goes from top to bottom) and
dependencies -list contains all packages that are needed.

Using this file you can now create an environment with:

$ conda env create --file environment.yml

© You can also use mamba

If you have mamba installed, you can replace conda with mamba in each command.

https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/en/latest/

You can then activate the environment with:

$ conda activate my-environment

O conda activate versus source activate

conda activate Will only work if you have run conda init inthe past. Running
conda init will make loading environments easier as you will always have a conda
environment loaded.

However, this can also cause problems as programs in the main environment will be
constantly loaded and they might be used even when they’re not supposed to be
used. A common example is not having pip installed in a conda environment which

results pip from main environment to be used instead.

You can then check e.g. installed versions of Python and numpy :

$ python -c 'import sys; import numpy; print(f"Python version:
{sys.version}\nNumPy version: {numpy._ version__}")'

Python version: 3.13.0 | packaged by conda-forge | (main, Oct 8 2024, 20:04:32)
[GCC 13.3.0]

NumPy version: 2.1.2

To deactivate the environment, you can run:

$ conda deactivate

O Creating environments without environment.yml/requirements.txt

It is possible to create environments with manual commands, but this is highly
discouraged for continuous use.

Firstly, replicating the environment becomes much harder.

Secondly, running package installation commands manually in an environment can result
in unexpected behaviour such as:

« Package manager might remove an already installed packages or update them.
« Package manager might not find a package that works with already installed packages.

The reason for this behavior is that package managers does not know what commands
you ran in the past. It only knows the state of your environment and what you're
currently telling it to install.

These kinds of problems can be mitigated by recording dependencies in an
environment.yml Or requirements.txt and using the relevant package manager to update
/ recreate the environment.

Exercise 3

@ Dependencies-3: Create a Python environment (15 min)

Use conda or venv to create the environment presented in the example.

Adding more packages to existing environments

Quite often when you're creating a new environment you might forget to add all relevant
packages to environment.yml OfF requirements.txt .

In these cases the best practice is to add missing packages to environment.yml or

requirements.txt and to update the environment.

Adding new packages to a conda environment
Adding new packages to a virtual environment

Add new packages that you want to install to dependencies in environment.yml .

Afterwards, run

$ conda env update --file environment.yml

to update the environment.

Sometimes the new packages are incompatible with the ones already in the environment.
Maybe they have different dependencies that are not satisfied with the current versions,
maybe the package you're installing is incompatible with the ones installed. In these cases the
safest approach is to re-create the environment. This will let the dependency solvers to start
from clean slate and with a full picture of what packages need to be installed.

Pinning package versions

Sometimes your code will only work with a certain range of dependencies. Maybe you use a
function or a class that was introduced in a later version or a newer version has modified its
API.

In these situations, you'll want to pin the package versions.

For example, there is usually a delay between doing research and that research being
published. During this time packages used in the research might update and reviewers or
interested researchers might not be able to replicate your results or run your code if new
versions are not compatible.

environment.yml with pinned versions requirements.txt with pinned versions

When pinning versions in environment.yml one can use a variety of comparison
operators:

name: my-environment
channels:
- conda-forge
dependencies:
Use python 3.11
- python=3.11
numpy that is bigger or equal than version 1, but less than version 2
- numpy>=1,<2
matplotlib greater than 3.8.2
- matplotlib>3.8.2
pandas that is compatible with 2.1
- pandas~=2.1

For more information on all possible specifications, see this page from Python'’s packaging
guide.

See also: https:/coderefinery.github.io/reproducible-research/dependencies/

O To pin or not to pin? That is the question.

Pinning versions means that you pin the environment to that instance in time when these
specific versions of the dependencies were being used.

This can be good for single-use applications, like replicating a research paper, but it is
usually bad for the long-term maintainability of the software.

https://packaging.python.org/en/latest/specifications/version-specifiers/
https://coderefinery.github.io/reproducible-research/dependencies/

Pinning to major versions or to compatible versions is usually the best practice as that
allows your software to co-exist with other packages even when they are updated.

Remember that at some point in time you will face a situation where newer versions of

the dependencies are no longer compatible with your software. At this point you'll have
to update your software to use the newer versions or to lock it into a place in time.

Exporting package versions from an existing environment

Sometimes you want to create a file that contains the exact versions of packages in the
environment. This is often called exporting or freezing and environment.

Doing this will create a file that does describe the installed packages, but it won't tell which
packages are the most important ones and which ones are just dependencies for those
packages.

Using manually created environment.yml or requirements.txt arein most cases better than

automatically created ones because they shows which packages are the important packages
needed by the software.

Exporting environment.yml from a conda environment
Exporting requirements.txt from a virtual environment
Once you have activated the environment, you can run

$ conda env export > environment.yml

If package build versions are not relevant for the use case, one can also run

$ conda env export --no-builds > environment.yml

which leaves out the package build versions.

Alternatively one can also run

$ conda env export --from-history > environment.yml

which creates the environment.yml -file based on what packages were asked to be

installed.

O conda-lock

For even more reproducibility, you should try out conda-lock. It turns your
environment.yml intoa conda.lock that has all information needed to exactly create

the same environment. You can use conda.lock -files in same way as

environment.yml When you create an environment:

$ conda env create --file conda.lock

Exercise 4

s Dependencies-4: Export an environment (15 min)

Export the environment you previously created.

Additional tips and tricks

Creating a conda environment from requirements.txt
Adding pip packages into conda environments
Installing pip packages from GitHub
conda supports installing an environment from requirements.txt .

$ conda env create --name my-environment --channel conda-forge --file
requirements. txt

To create an environment.yml from this environment that mimics the

requirements.txt , activate it and run

$ conda env export --from-history > environment.yml

https://github.com/conda/conda-lock

How to communicate the dependencies as part of a
report/thesis/publication

Each notebook or script or project which depends on libraries should come with either a
requirements.txt Or a environment.yml , unless you are creating and distributing this project
as Python package (see next section).

o Attach a requirements.txt Ora environment.yml to your thesis.
o Even better: put requirements.txt oOra environment.yml in your Git repository along
your code.

« Even better: also binderize your analysis pipeline (more about that in a later session).

Version pinning for package creators

We will talk about packaging in a different session but when you create a library and package
projects, you express dependencies either in pyproject.toml (or setup.py) (PyPl)or
meta.yaml (conda)

These dependencies will then be used by either other libraries (who in turn write their own
setup.py OF pyproject.toml Or meta.yaml) or by people directly (filling out

requirements.txt OF a environment.yml l

Now as a library creator you have a difficult choice. You can either pin versions very narrowly
like here (example taken from setup.py):

...

install requires=[
"numpy==1.19.2",
'matplotlib==3.3.2'
'pandas==1.1.2"
'scipy==1.5.2"

3

or you can define a range or keep them undefined like here (example taken from setup.py):

install requires=[
‘numpy ',
'matplotlib’
'pandas’
'scipy'’

I

Should we pin the versions here or not?

« Pinning versions here would be good for reproducibility.
« However pinning versions may make it difficult for this library to be used in a project
alongside other libraries with conflicting version dependencies.
« Therefore as library creator make the version requirements as wide as possible.
o Set minimum version when you know of a reason: >=2.1
o Sometimes set maximum version to next major version (<4) (when you currently use
3.x.y) when you expect issues with next major version.
« As the “end consumer” of libraries, define your dependencies as narrowly as possible.

See also

Other tools for dependency management:

o Poetry: dependency management and packaging

« Pipenv: dependency management, alternative to Poetry

« pyenv: if you need different Python versions for different projects

« micropipenv: lightweight tool to “rule them all”

« mamba: a drop in replacement for conda that does installations faster.

« miniforge: Miniconda alternative with conda-forge as the default channel and optionally
mamba as the default installer.

« micromamba: tiny version of Mamba as a static C++ executable. Does not need base
environment or Python for installing an environment.

« pixi: a package management tool which builds upon the foundation of the conda
ecosystem.

Other resources:

 https:/scicomp.aalto.fi/scicomp/packaging-software/

O Keypoints

« If somebody asks you what dependencies your code has, you should be able to answer
this question with a file.

« Install dependencies by first recording them in requirements.txt Or environment.yml
and install using these files, then you have a trace.

« Useisolated environments and avoid installing packages system-wide.

Binder

« Why sharing code alone may not be sufficient.
« How to share a computational environment?
« What is Binder?

https://python-poetry.org/
https://pipenv.pypa.io/
https://github.com/pyenv/pyenv
https://github.com/thoth-station/micropipenv
https://mamba.readthedocs.io/en/latest/index.html
https://github.com/conda-forge/miniforge
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://pixi.sh/
https://scicomp.aalto.fi/scicomp/packaging-software/

« How to binderize my Python repository?
« How to publish my Python repository?

O Objectives

« Learn about reproducible computational environments.
 Learn to create and share custom computing environments with Binder.
» Learn to get a DOI from Zenodo for a repository.

Why is it sometimes not enough to share your code?

mm&“ﬂm 4 .
/A

7
L

Exercise 1

gw Binder-1: Discuss better strategies than only code sharing (10 min)

Lea is a PhD student in computational biology and after 2 years of intensive work, she is
finally ready to publish her first paper. The code she has used for analyzing her data is
available on GitHub but her supervisor who is an advocate of open science told her that
sharing code is not sufficient.

Why is it possibly not enough to share “just” your code? What problems can you
anticipate 2-5 years from now?

We form small groups (4-5 persons) and discuss in groups. If the workshop is online, each
group will join a breakout room. If joining a group is not possible or practical, we use the
shared document to discuss this collaboratively.

Each group write a summary (bullet points) of the discussion in the workshop shared
document (the link will be provided by your instructors).

Sharing a computing environment with Binder

Binder allows you to create custom computing environments that can be shared and used by
many remote users. It uses repo2docker to create a container image (docker image) of a
project using information contained in included configuration files.

Repo2docker is a standalone package that you can install locally on your laptop but an online
Binder service is freely available. This is what we will be using in the tutorial.

The main objective of this exercise is to learn to fork a repository and add a requirement file
to share the computational environment with Binder.

https://mybinder.readthedocs.io/en/latest/
https://repo2docker.readthedocs.io/en/latest/
https://www.docker.com/
https://mybinder.org/
https://mybinder.org/

JANE HAS WRITTEN A PAPER STEP ©
o BASED ON HER EXPERIMENTS, 5 SHE DESCRIBES THE
)=
O

EXPERIMENTS AS A

Jupyter NOTEBOOK, MIXING:
2= &~

—— |~ PROSE

= 11 CODE &

= % VISUVALIZATION

\%{V d 0? | AND ReSOURCES:
p— SOURCE COTDE,
@ DATA
SHE WOULD LIKE ANYONE TO BE MEDIA(
ABLE TO REPRODUCE, CHECK, AND
IMPROVE HER CALCULATIONS

sTer @
SHE PUBLISHES THEM SHE MAKES THAT REPOSITORY BINDER—
ON A PUBLICLY READY BY DESCRIBING THE SOFTWARE
HOSTED REPOSITORY REQUIRED TO RUN THE NOTEBOOK

CONFIGURATION \/

©)

NOTEBOOK v

GITLAB

BITBUCKET
EVERYONE CAN NOW RUN AND
REPRODUCE HER COMPUTATIONS

RESOURCES v
L sTeP @

Credit: Juliette Taka, Logilab and the OpenDreamKit project (2017)

Binder exercise/demo

In an earlier episode (Data visualization with Matplotlib) we have created this notebook:

import pandas as pd
import matplotlib.pyplot as plt

url =
"https://raw.githubusercontent.com/plotly/datasets/master/gapminder_with_codes.csv"
data = pd.read_csv(url)

data_2007 = data[data["year"] == 2007]

fig, ax = plt.subplots()

ax.scatter(x=data_2007["gdpPercap"], y=data_2007["lifeExp"], alpha=0.5)

ax.set_xscale("log")

ax.set_xlabel("GDP (USD) per capita")
ax.set_ylabel("life expectancy (years)")

We will now first share it via GitHub “statically”, then using Binder.

¢ Binder-2: Exercise/demo: Make your notebooks reproducible by anyone (15 min)

https://opendreamkit.org/2017/11/02/use-case-publishing-reproducible-notebooks/
https://github.com/
https://mybinder.org/

Instructor demonstrates this. This exercise (and all following) requires git/GitHub
knowledge and accounts, which wasn’t a prerequisite of this course. Thus, this is a
demo (and might even be too fast for you to type-along). Watch the video if you are
reading this later on:

« Creates a GitHub repository

« Uploads the notebook file

« Then we look at the statically rendered version of the notebook on GitHub
o Createa requirements.txt file which contains:

pandas==1.2.3
matplotlib==3.4.2

« Commit and push also this file to your notebook repository.
« Visit https:/mybinder.org and copy paste the code under “Copy the text below ..." into
your README.md:

B 1]l il e e Replace with URL for your repository

GitHub repository name or URL /

GitHub~ | https://github.com/coderefinery/jupyter

Git ref (branch, tag, or commit) Path to a notebook file (optional)
File =
Copy the URL below and share your Binder with others: Click the arrow
https://mybinder.org/v2/gh/coderefinery/jupyter /HEAD [%]
Copy the text below, then paste into your README to show a binder badge: v

m [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/coderefinery/jupyter/HE @

3

st | .. image:: https://mybinder.org/badge_logl @ vg E]
:target: https://mybinder.org/v2/gh/coderey nery/jupyter/HEAD

Copy-paste this to your README.md

« Check that your notebook repository now has a “launch binder” badge in your
README.md file on GitHub.

 Try clicking the button and see how your repository is launched on Binder (can take a
minute or two). Your notebooks can now be explored and executed in the cloud.

« Enjoy being fully reproducible!

How can I get a DOI from Zenodo?

Zenodo is a general purpose open-access repository built and operated by CERN and
OpenAlRE that allows researchers to archive and get a Digital Object Identifier (DOI) to data
that they share.

https://mybinder.org/
https://about.zenodo.org/
https://home.cern/
https://www.openaire.eu/
https://www.doi.org/

g Binder-3: Link a Github repository with Zenodo (optional)

Everything you deposit on Zenodo is meant to be kept (long-term archive). Therefore
we recommend to practice with the Zenodo “sandbox” (practice/test area) instead:
https:/sandbox.zenodo.org

1. Link GitHub with Zenodo:

« Go to https:/sandbox.zenodo.org (or to https:/zenodo.org for the real upload later,
after practicing).

« Login to Zenodo with your GitHub account. Be aware that you may need to
authorize Zenodo application (Zenodo will redirect you back to GitHub for
Authorization).

o Choose the repository webhooks options.

o From the drop-down menu next to your email address at the top of the page,
select GitHub.

« You will be presented with a list of all your Github repositories.

2. Archiving a repo:

Select a repository you want to archive on Zenodo.

Toggle the “on” button next to the repository ou need to archive.

Click on the Repo that you want to reserve.

Click on Create release button at the top of the page. Zenodo will redirect you
back to GitHub's repo page to generate a release.

3. Trigger Zenodo to Archive your repository

« Go to GitHub and create a release. Zenodo will automatically download a .zip-ball
of each new release and register a DOI.

« If this is the first release of your code then you should give it a version number of
v1.0.0. Add description for your release then click the Publish release button.

« Zenodo takes an archive of your GitHub repository each time you create a new
Release.

4. To ensure that everything is working:

https://sandbox.zenodo.org/
https://sandbox.zenodo.org/
https://zenodo.org/

« Go to https:/zenodo.org/account/settings/github/ (or the corresponding sandbox
at https:/sandbox.zenodo.org/account/settings/github/), or the Upload page
(https:/zenodo.org/deposit), you will find your repo is listed.

» Click on the repo, Zenodo will redirect you to a page that contains a DOI for your
repo will the information that you added to the repo.

« You can edit the archive on Zenodo and/or publish a new version of your software.

« It is recommended that you add a description for your repo and fill in other
metadata in the edit page. Instead of editing metadata manually, you can also add a

.zenodo.json ora cITATION.cff file to your repo and Zenodo will infer the
metadata from this file.

« Your code is now published on a Github public repository and archived on Zenodo.

« Update the README file in your repository with the newly created zenodo badge.

Create a Binder link for your Zenodo DOI

Rather than specifying a GitHub repository when launching binder, you can instead use a
Zenodo DOI.

g Binder-4: Link Binder with Zenodo (10 min)

We will be using an existing Zenodo DOI 10.5281/zenodo.3886864 to start Binder:
« Go to https:/mybinder.org and fill information using Zenodo DOI (as shown on the

animation below):

Build and launch a repository

GitHub repository name or URL

GitHub repository name or URL G&;ub v
Git branch, tag, or commit Path to a notebook file (optional)
Git branch, tag, or commit 2] Path to a notebook file (optional) File »

Copy the URL below and share your Binder with others:

Fill in the fields to see a URL for sharing your Binder. E]

Copy the text below, then paste into your README to show a binder badge: >

« You can also get a Binder badge and update the README file in the repository. It is
good practice to add both the Zenodo badge and the corresponding Binder badge.

O Keypoints

« lItis easy to sharing reproducible computational environments

https://zenodo.org/account/settings/github/
https://sandbox.zenodo.org/account/settings/github/
https://zenodo.org/deposit
https://doi.org/10.5281/zenodo.3247652
https://mybinder.org/

« Binder provides a way for anyone to test and run code - without you needing to set up
a dedicated server for it.
« Zenodo provides permanent archives and a DOI.

Parallel programming

Questions

« When you need more than one processor, what do you do?
« How can we use more than one processor/core in Python?

O Objectives

« Understand the major strategies of parallelizing code
« Understand mechanics of the multiprocessing package

« Know when to use more advanced packages or approaches

Modes of parallelism

You realize you do have more computation to do than you can on one processor? What do
you do?

1. Profile your code, identify the actual slow spots.

2. Can you improve your code in those areas? Use an existing library?
3. Are there are any low-effort optimizations that you can make?

4. Consider using numba or cython to accelerate key functions.

5. Think about parallelizing.

Many times in science, you want to parallelize your code: either if the computation takes too
much time on one core or when the code needs to be parallel to even be allowed to run on a
specific hardware (e.g. supercomputers).

Parallel computing is when many different tasks are carried out simultaneously. There are
three main models:

« Embarrassingly parallel: the code does not need to synchronize/communicate with other
instances, and you can run multiple instances of the code separately, and combine the
results later. If you can do this, great! (array jobs, task queues, workflow management
tools)

« Multithreading: Parallel threads need to communicate and do so via the same memory
(variables, state, etc). (OpenMP, threading)

« Multiprocessing, message passing: Different processes manage their own memory
segments. They share data by communicating (passing messages) as needed.

(multiprocessing , MPI).

https://numba.pydata.org/
https://cython.org/

Parallel programming is not magic, but many things can go wrong and you can get
unexpected results or difficult to debug problems. Parallel programming is a fascinating
world to get involved in, but make sure you invest enough time to do it well.

See the video by Raymond Hettinger (“See Also” at bottom of page) for an entertaining
take on this.

Multithreading and the GIL

The designers of the Python language made the choice that only one thread in a process can
run actual Python code by using the so-called global interpreter lock (GIL). This means that
approaches that may work in other languages (C, C++, Fortran), may not work in Python. At
first glance, this is bad for parallelism. But it’s not all bad!:

« External libraries (NumPy, SciPy, Pandas, etc), written in C or other languages, can release
the lock and run multi-threaded.

« Most input/output releases the GIL, and input/output is slow. The threading library can
be used to multithread I/0.

o Python libraries like multiprocessing and mpi4py run multiple Python processes and this

circumvents the GIL.

Consider the following code which does a symmetrical matrix inversion of a fairly large
matrix:

import numpy as np
import time

A np.random.random((4000,4000))

A A * AT

time_start = time.time()

np.linalg.inv(A)

time_end = time.time()

print("time spent for inverting A is", round(time_end - time_start,2), 's')

If we run this in a Jupyter notebook or through a Python script, it will automatically use
multithreading through OpenMP. We can force NumPy to use only one thread by setting an
environment variable (either export OMP_NUM_THREADS=1 Or export MKL_NUM_THREADS=1 ,
depending on how NumPy is compiled on your machine), and this will normally result in
significantly longer runtime.

= See also

« More on the global interpreter lock

https://wiki.python.org/moin/GlobalInterpreterLock

o Threading python module. This is very low level and you shouldn'’t use it unless you
really know what you are doing.
« We recommend you find a UNIX threading tutorial first before embarking on using the
threading module.

multiprocessing

As opposed to threading, Python has a reasonable way of doing something similar that uses
multiple processes: the multiprocessing module. The interface is a lot like threading, but in

the background creates new processes to get around the global interpreter lock.

To show an example, the split-apply-combine or map-reduce paradigm is quite useful for
many scientific workflows. Consider you have this:

def square(x):
return x*x

You can apply the function to every element in a list using the map() function:

>>> list(map(square, [1, 2, 3, 4, 5, 6]))
[1, 4, 9, 16, 25, 36]

The multiprocessing.pool.Pool class provides an equivalent but parallelized (via

multiprocessing) way of doing this. The pool class, by default, creates one new process per
CPU and does parallel calculations on the list:

>>> from multiprocessing import Pool

>>> with Pool() as pool:

. pool.map(square, [1, 2, 3, 4, 5, 6])
[1, 4, 9, 16, 25, 36]

Running the above example interactively in a Jupyter notebook or through an
Python/IPython terminal may or may not work on your computer! This is a feature and
not a bug, as covered in the documentation.

Fortunately, there is a fork of multiprocesssing called multiprocess which does work in
interactive environments. All we have to do is install it by pip install multiprocess and

change the import statement: from multiprocess import Pool .

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://doi.org/10.18637%2Fjss.v040.i01
https://en.wikipedia.org/wiki/MapReduce
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/3/library/multiprocessing.html
https://pypi.org/project/multiprocess/

Exercises, multiprocessing

ga Parallel-1, multiprocessing

Here, you find some code which calculates pi by a stochastic algorithm. You don't really
need to worry how the algorithm works, but it computes random points in a 1x1 square,
and computes the number that fall into a circle. Copy it into a Jupyter notebook and use
the %xtimeit cell magic on the computation part (the one highlighted line after timeit

below):

import random

def sample(n):
"""Make n trials of points in the square. Return (n, number_in_circle)

This is our basic function. By design, it returns everything it\
needs to compute the final answer: both n (even though it is an input
argument) and n_inside_circle. To compute our final answer, all we
have to do is sum up the n:s and the n_inside_circle:s and do our
computation"""
n_inside_circle = 0
for i in range(n):

X = random.random()

y random. random()

if x**2 + y**2 < 1.0:

n_inside_circle += 1

return n, n_inside_circle

%%timeit
n, n_inside_circle = sample(10**6)

pi = 4.0 * (n_inside_circle / n)
pi

Using the multiprocessing.pool.Pool code from the lesson, run the sample function 10
times, each with 10**5 samples only. Combine the results and time the calculation. What

is the difference in time taken?

NOTE: If you're working in an interactive environment and this doesn’t work with the
multiprocessing module, install and use the multiprocess module instead!

(optional, advanced) Do the same but with multiprocessing.pool.ThreadPool instead. This
works identically to prool , but uses threads instead of different processes. Compare the

time taken.

See the finished notebook here Python multithreading solution.

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.ThreadPool

You notice the version with Threadrool is no faster, and probably takes even longer.
This is because this is a pure-Python function which can not run simultaneously in
multiple threads.

¢ (advanced) Parallel-2 Running on a cluster

How does the pool know how many CPUs to take? What happens if you run on a
computer cluster and request only part of the CPUs on a node?

Pool by default uses one process for each CPU on the node - it doesn’t know about
your cluster’s scheduling system. It's possible that you have permission to use 2 CPUs
but it is trying to use 12. This is generally a bad situation, and will just slow you down
(and make other users on the same node upset)!

You either need to be able to specify the number of CPUs to use (and pass it the right
number), or make it aware of the cluster system. For example, on a Slurm cluster you
would check the environment variable SLURM_cPus_PER_TASK .

Whatever you do, document what your code is doing under the hood, so that other
users know what is going on (we've learned this from experience...).

MPI

The message passing interface (MPI) approach to parallelization is that:

« Tasks (cores) have a rank and are numbered O, 1, 2, 3, ...

« Each task (core) manages its own memory

« Tasks communicate and share data by sending messages

« Many higher-level functions exist to distribute information to other tasks and gather
information from other tasks

« All tasks typically run the entire code and we have to be careful to avoid that all tasks do
the same thing

Introductory MPI lessons where Python is included:

 https:/rantahar.github.io/introduction-to-mpi/
o https:/pdc-support.github.io/introduction-to-mpi/

These blog posts are good for gentle MPI/mpi4py introduction:

+ https:/www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/
« https:/www.kth.se/blogs/pdc/2019/11/parallel-programming-in-python-mpi4py-part-2/

https://rantahar.github.io/introduction-to-mpi/
https://pdc-support.github.io/introduction-to-mpi/
https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/
https://www.kth.se/blogs/pdc/2019/11/parallel-programming-in-python-mpi4py-part-2/

Those who use MPIlin C, C++, Fortran, will probably understand the steps in the following
example. For learners new to MPI, we can explore this example together.

Here we reuse the example of approximating pi with a stochastic algorithm from above, and
we have highlighted the lines which are important to get this MPI example to work:

import random
import time
from mpidpy import MPI

def sample(n):
"""Make n trials of points in the square. Return (n, number_in_circle)

This is our basic function. By design, it returns everything it\
needs to compute the final answer: both n (even though it is an input
argument) and n_inside_circle. To compute our final answer, all we
have to do is sum up the n:s and the n_inside circle:s and do our
computation"""
n_inside_circle = 0
for i in range(n):

X = random.random()

y = random.random()

if x ** 2 +y ** 2 <1.0:

n_inside_circle += 1

return n, n_inside_circle

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

n =10 ** 7

if size > 1:

n_task = int(n / size)
else:

n_task = n

t0 = time.perf_counter()
_, n_inside_circle = sample(n_task)
t = time.perf_counter() - tO

print(f"before gather: rank {rank}, n_inside_circle: {n_inside_circle}")
n_inside_circle = comm.gather(n_inside_circle, root=0)
print(f"after gather: rank {rank}, n_inside_circle: {n_inside_circle}")

if rank ==
pi_estimate = 4.0 * sum(n_inside_circle) / n
print(
f"\nnumber of darts: {n}, estimate: {pi_estimate}, time spent: {t:.2} seconds"
)

Exercises, MPI

ga Parallel-3, MPI

We can do this as exercise or as demo. Note that this example requires mpi4py and a

MPI installation such as for instance OpenMPI.

« Try to run this example on one core: $ python example.py .

« Then compare the output with a run on multiple cores (in this case 2): $ mpiexec -n 2
python example.py .

« Can you guess what the comm.gather function does by looking at the print-outs right
before and after.

« Why do we have the if-statement if rank == o at the end?

o Why did we use _, nh_inside_circle = sample(n_task) and not n, n_inside_circle =

sample(n_task) ?

We first run the example normally, and get:

$ python example.py
before gather: rank 0, n_inside_circle: 7854305
after gather: rank 0, n_inside_circle: [7854305]

number of darts: 10000000, estimate: 3.141722, time spent: 2.5 seconds

Next we take advantage of the MPI parallelisation and run on 2 cores:

$ mpirun -n 2 python mpi_test.py

before gather: rank 0, n_inside_circle: 3926634

before gather: rank 1, n_inside_circle: 3925910

after gather: rank 1, n_inside_circle: None

after gather: rank 0, n_inside_circle: [3926634, 3925910]

number of darts: 10000000, estimate: 3.1410176, time spent: 1.3 seconds

Note that two MPI processes are now printing output. Also, the parallel version runs
twice as fast!

The comm.gather function collects (gathers) values of a given variable from all MPI

ranks onto one root rank, which is conventionally rank O.

A conditional if rank == o is typically used to print output (or write data to file, etc)
from only one rank.

An underscore _ is often used as a variable name in cases where the data is

unimportant and will not be reused.

https://www.open-mpi.org/

Coupling to other languages

As mentioned further up in “Multithreading and the GIL’, Python has the global interpreter
lock (GIL) which prevents us from using shared-memory parallelization strategies like
OpenMP “directly”.

However, an interesting workaround for this can be to couple Python with other languages
which do not have the GIL. This also works just as well when you don'’t need parallelism, but
need to make an optimized algorithm for a small part of the code.

Two strategies are common:
« Couple Python with compiled languages like C, C++, Fortran, or Rust and let those handle

the shared-memory parallelization:

o C: use the cffi package (C foreign function interface). ctypes is a similar but
slightly more primitive module that is in the standard library.

o C++: use pybind11

o Fortran: create a C interface using iso_c_binding and then couple the C layer to

Python using cffi
o Rust: use PyO3

« Let compiled languages do the shared-memory parallelization part (as in above point) and
let Python do the MPI work and distribute tasks across nodes using an mpi4py layer.

Coupling Python with other languages using the above tools is not difficult but it goes
beyond the scope of this course.

Before you take this route, profile the application first to be sure where the bottleneck is.
Of course sometimes coupling languages is not about overcoming bottlenecks but about

combining existing programs which have been written in different languages for whatever
reason.

Dask and task queues

There are other strategies that go completely beyond the manual parallelization methods
above. We won't go into much detail.

Dask

Dask is a array model extension and task scheduler. By using the new array classes, you can
automatically distribute operations across multiple CPUs.

Dask is very popular for data analysis and is used by a number of high-level Python libraries:

https://cffi.readthedocs.io/
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://pybind11.readthedocs.io/
https://cffi.readthedocs.io/
https://pyo3.rs/
https://dask.org/

« Dask arrays scale NumPy (see also xarray
« Dask dataframes scale Pandas workflows
o Dask-ML scales Scikit-Learn

Dask divides arrays into many small pieces (chunks), as small as necessary to fit it into
memory. Operations are delayed (lazy computing) e.g. tasks are queue and no computation is
performed until you actually ask values to be computed (for instance print mean values).
Then data is loaded into memory and computation proceeds in a streaming fashion, block-by-
block.

& Example from dask.org

Arrays implement the Numpy API

import dask.array as da

x = da.random.random(size=(10000, 10000),
chunks=(1000, 1000))

X + X.T - x.mean(axis=0)

It runs using multiple threads on your machine.

It could also be distributed to multiple machines

Exercises, Dask

gz Dask-Examples (optional)

Dask examples illustrate the usage of dask and can be run interactively through mybinder.
Start an interactive session on mybinder and test/run a few dask examples.

Task queues

A task queue has a scheduler which takes a list of small jobs and distributes them to runners
for computation. It serves as a synchronization layer and may be useful for embarrassingly
parallel jobs.

There are different descriptions of task queues in Python. Job runners ask the queue for the
task which needs to be done next. If you can divide your job into many small parts, this may
be useful to you. However, if you have a cluster with a job scheduler, this may be a bit
redundant.

See also

Thinking about Concurrency, Raymond Hettinger. Good introduction to simple and safe
concurrent code.

Introduction to Numba and Cython.

More detailed exposition of parallel computing in Python.

Introduction to Dask for scalable analytics.

https://xarray.pydata.org/en/stable/
https://github.com/dask/dask-examples
https://mybinder.org/
https://mybinder.org/v2/gh/dask/dask-examples/master?urlpath=lab
https://www.fullstackpython.com/task-queues.html
https://youtu.be/Bv25Dwe84g0
https://enccs.github.io/hpda-python/performance-boosting/
https://enccs.github.io/hpda-python/parallel-computing/
https://enccs.github.io/hpda-python/dask/

O Keypoints

o Pure Python is not very good for highly parallel code.

« Luckily it interfaces to many things which are good, and give you the full control you
need.

« Combining vectorized functions (NumPy, Scipy, pandas, etc.) with the parallel
strategies listed here will get you very far.

« Another popular framework similar to multiprocessing is joblib.

Packaging

Questions

« How to organize Python projects larger than one script?

« What is a good file and folder structure for Python projects?

« How can you make your Python functions most usable by your collaborators?
« How to prepare your code to make a Python package?

« How to publish your Python package?

O Objectives

« Learn to identify the components of a Python package
« Learn to create a Python package
« Learn to publish a Python package

Organizing Python projects

Python projects often start as a single script or Jupyter notebook but they can grow out of a
single file.

In the Scripts episode we have also learned how to import functions and objects from other
Python files (modules). Now we will take it a step further.

Recommendations:

« Collect related functions into modules (files).

« Collect related modules into packages (we will show how).

o Adda License file to your code from choosealicense.com (see Software Licensing and
Open source explained with cakes).

o Writea reapbve.md file describing what the code does and how to use it.

« Itis also recommended to document your package.

« When the project grows, you might need automated testing.

https://joblib.readthedocs.io/en/latest/
https://choosealicense.com/
https://github.com/coderefinery/social-coding/blob/main/licensing-and-cakes.md
https://github.com/coderefinery/social-coding/blob/main/licensing-and-cakes.md
https://coderefinery.github.io/documentation/
https://coderefinery.github.io/testing/

To have a concrete but still simple example, we will create a project consisting of 3 functions,
each in its own file. We can then imagine that each file would contain many more functions.
To make it more interesting, one of these functions will depend on an external library: scipy .

These are the 3 files:

adding.py
def add(x, y):
return x + vy
subtracting.py
def subtract(x, y):
return x - y
integrating.py

from scipy import integrate

def integral(function, lower_limit, upper_limit):
return integrate.quad(function, lower_limit, upper_limit)

We will add a fourth file:

__init__.py

mmn

Example calculator package.

mmin

from .adding import add
from .subtracting import subtract
from .integrating import integral

__version__ = "0.1.0"

This __init__.py file will be the interface of our package/library. It also holds the package
docstring and the version string. Note how it imports functions from the various modules
using relative imports (with the dot).

This is how we will arrange the files in the project folder/repository:

project-folder

— calculator

— adding.py

F— __init__.py
— integrating.py
L— subtracting.py
LICENSE

README . md

T

Now we are ready to test the package. For this we need to be in the “root” folder, what we
have called the project-folder. We also need to have scipy available in our environment:

from calculator import add, subtract, integral

print("2 + 3 =", add(2, 3))

print("2 - 3 =", subtract(2, 3))

integral_x_squared, error = integral(lambda x: x * x, 0.0, 1.0)
print(f"{integral_x_squared = }")

The package is not yet pip-installable, though. We will make this possible in the next section.

Testing a local pip install

To make our example package pip-installable we need to add one more file:

project-folder
— calculator

| F— adding.py
| = —dinit__.py

| — integrating.py
| L— subtracting.py
— LICENSE

— README.md

L— pyproject.toml

This is how pyproject.toml looks:

pyproject.toml!

[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"

[project]

name = '"calculator-myname"

description = "A small example package"
version = "0.1.0"

readme = "README.md"

authors = [
{ name = "Firstname Lastname", email = "firstname.lastname@example.org" }

1
dependencies = [
"SCipy"

]

Note how our package requires scipy and we decided to not pin the version here (see

Version pinning for package creators).

Now we have all the building blocks to test a local pip install. This is a good test before trying
to upload a package to PyPI or test-PyPI (see PyPI| (The Python Package Index) and conda
ecosystem)

Sometime you need to rely on unreleased, development versions as dependencies and this
is also possible. For example, to use the latest xarray you could add:

dependencies = [
llscipyll ,
"xarray @ https://github.com/pydata/xarray/archive/main.zip"

= See also

» pip requirement specifiers
« pyOpenSci tutorial on pyproject.toml metadata

Exercise 1

¢w Packaging-1

To test a local pip install:

« Create a new folder outside of our example project
« Create a new virtual environment (Dependency management)
« Install the example package from the project folder into the new environment:

https://pip.pypa.io/en/stable/reference/requirement-specifiers/
https://www.pyopensci.org/python-package-guide/tutorials/pyproject-toml.html

pip install --editable /path/to/project-folder/

Test the local installation:

from calculator import add, subtract, integral

print("2 + 3 =", add(2, 3))

print("2 - 3 =", subtract(2, 3))

integral_x_squared, error = integral(lambda x: x * x, 0.0, 1.0)
print(f"{integral_x_squared = }")

« Make a changein the subtract function above such that it always returns a float

return float(x - y) .

« Open a new Python console and test the following lines. Compare it with the previous
output.

from calculator import subtract

print("2 - 3 =", subtract(2, 3))

Sharing packages via PyPI

Most people will watch and observe this, due to the speed with which we will move.

Once we are able to pip-install the example package locally, we are ready for upload.

We exercise by uploading to test-PyPI, not the real PyPl, so that if we mess things up,
nothing bad happens.

We need two more things:

« We will do this using Twine so you need to pip install that, too.
« You need an account on test-PyPI

Let’s try it out. First we create the distribution package:

$ python3 -m build

We need twine:

https://test.pypi.org/
https://pypi.org/
https://twine.readthedocs.io/
https://test.pypi.org/

$ pip install twine

And use twine to upload the distribution files to test-PyPI:

$ twine upload -r testpypi dist/*

Uploading distributions to https://test.pypi.org/legacy/
Enter your API token:

To generate an APl token, proceed to the Create API token page in test-PyPl. You will be
prompted for your password.

v The long-version for finding the Create API token page

1. Log on to test-PyPI at https:/test.pypi.org
2. In the top-right corner, click on the drop-down menu and click Account settings or

follow this link.
3. Scroll down to the section API tokens and click the button Add API token, which

opens up the Create API token page.

1. Under Token name write something memorable. It should remind you the purpose or
the name of the computer, such that when you are done using it, you can safely delete

it.
2. Under Scope select Entire account (all projects) .

3. Click on Create token.
4. Click on Copy token once a long string which starts with pypi- is generated.

Paste that token back into the terminal where twine upload ... isrunningand press

ENTER.

Once this is done, create yet another virtual environment and try to install from test-PyPI

(adapt myname).

Linux / macOS Windows

https://test.pypi.org/manage/account/token/
https://test.pypi.org/
https://test.pypi.org/
https://test.pypi.org/manage/account/#api-tokens
https://test.pypi.org/manage/account/token/

$ python3 -m venv venv-calculator

$ source venv-calculator/bin/activate

$ which python

$ python3 -m pip install \
-1 https://test.pypi.org/simple/ \
--extra-index-url https://pypi.org/simple/ \
calculator-myname

$ deactivate

Tools that simplify sharing via PyPI

The solution that we have used to create the example package (using setuptools and
twine) is not the only approach. There are many ways to achieve this and we avoided going

into too many details and comparisons to not confuse too much. If you web-search this, you
will also see that recently the trend goes towards using pyproject.toml as more general

alternative to the previous setup.py .

There are at least two tools which try to make the packaging and PyPl interaction easier:

o Poetry
o Flit

If you upload packages to PyPI or test PyPI often you can create an APl token and save it in
the .pypirc file.

Building a conda package and share it

O Prerequisites

To generate a conda build recipe, the package grayskull and to build it, the package
conda-build are required. You may install these with Anaconda Navigator or from the

command line;

$ conda install -n base grayskull conda-build

The simplest way for creating a conda package for your python script is to first publish it in
PyPI following the steps explained above.

Building a python package with grayskull and conda-build

https://python-poetry.org/
https://flit.pypa.io/
https://packaging.python.org/en/latest/specifications/pypirc/#common-configurations
https://packaging.python.org/en/latest/specifications/pypirc/#common-configurations
https://pypi.org/

Once build, the conda package can be installed locally. For this example, we will use runtest.
runtest is a numerically tolerant end-to-end test library for research software.

1. Generate the recipe by executing (grayskull or conda grayskull):

$ conda grayskull pypi runtest

The command above will create a new folder called runtest containing a file meta.yaml,
the conda recipe for building the runtest package.

2. View the contents of meta.yaml and ensure requirements :

requirements:
host:
- python
- flit-core >=2,<4
- pip
run:
- python

In the requirements above, we specified what is required for the host and for running the
package.

For pure python recipes, this is all you need for building a python package with conda.
If your package needs to be built (for instance compilation), you would need additional
files e.g. build.sh (to build on Linux/Mac-OSX) and bld.bat (to build on Windows
systems). You can also add test scripts for testing your package. See documentation

3. Build your package with conda

Your package is now ready to be build with conda:

$ conda build runtest

O Conda package location

Look at the messages produced while building. The location of the local conda
package is given (search for anaconda upload):

/home/username/miniforge3/conda-bld/noarch/runtest-2.3.4-py_0.tar.bz2

https://pypi.org/project/runtest/
https://github.com/bast/runtest
https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#host
https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#run
https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs.html#writing-the-build-script-files-build-sh-and-bld-bat

The prefix /home/username/miniforge3/ may be different on your machine. depending

on your operating system (Linux, Mac-OSX or Windows). The sub-folder is named
noarch since it is a pure-python package and the recipe indicates the same.

If package contained compiled code then the sub-folder would have been named win-

64 or linux-64 . It could then be converted to other platforms using conda convert.

4. Check within new environment

It is not necessary to create a new conda environment to install it but as explained in
previous episode, it is good practice to have isolated environments.

$ conda create -n local-runtest --use-local runtest

We can then check runtest has been successfully installed in local-runtest conda
environment. Open a new Terminal with local-runtest environment (either from the
command line:

$ conda activate local-runtest

or via Anaconda Navigator (Open Terminal), import runtest and check its version:

import runtest
print(runtest.__version__)

O Building a conda package from scratch

It is possible to build a conda package from scratch without using conda grayskull. We
recommend you to check the conda-build documentation for more information.

To be able to share and install your local conda package anywhere (on other platforms), you
would need to upload it to a conda channel (see below).

Publishing a python package

« Upload your package to conda-forge: conda-forge is a conda channel: it contains
community-led collection of recipes, build infrastructure and distributions for the conda
package manager. Anyone can publish conda packages to conda-forge if certain guidelines
are respected.

« Upload your package to bioconda: bioconda is a very popular channel for the conda
package manager specializing in bioinformatics software. As for conda-forge, you need to
follow their guidelines when building conda recipes.

You can also create your own conda channel for publishing your packages.

https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs.html#converting-a-package-for-use-on-all-platforms
https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html
https://conda-forge.org/
https://conda-forge.org/docs/maintainer/adding_pkgs/
https://conda-forge.org/docs/maintainer/guidelines/
https://bioconda.github.io/
https://bioconda.github.io/contributor/guidelines.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/create-custom-channels.html

O Keypoints

« Itis worth it to organize your code for publishing, even if only you are using it.
« PyPlis a place for Python packages
« conda is similar but is not limited to Python

Web APIs with Python

Questions

« Have you ever needed to get some data from somewhere else on the web?

O Objectives

« Understand a web server and APl and why might you need to talk to one.

» Basics of the requests Python library

« Some lightweight recommendations on saving data when you get to more serious data
download.

Requests

Requests is a Python library that makes requests to web servers. It provides a nice interface
and is one of the go-to tools. It does the raw data-download for simple web servers.

First, let’s take a tour of the Requests webpage. Below, we embed the Requests website into
a Jupyter notebook, but you might want to open it in another browser tab:
https:/requests.readthedocs.io/en/latest/

Embed the requests homepage

from IPython.display import IFrame

requests_documentation_url = "https://requests.readthedocs.io/en/latest/"
IFrame(requests_documentation_url, '100%', '30%')

Retrieve data from API

An API (Application Programming Interface) is the definition of the way computer programs
communicate with each other. We use Requests to connect to the APl of a web server, tell it
what we want, and it returns it to us. This is called the request-response cycle.

We can find a list of some free APIs (available without authentication) at
https:/apipheny.io/free-api/#apis-without-key . These APIs can be used for developing and
testing our code.

https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://apipheny.io/free-api/#apis-without-key

Let’s make a request to the Cat Fact API. If we go to https:/catfact.ninja/, it gives us the
definitions:

o GET /fact isthe APl endpoint.

o GET is the type of request we make and
e /fact isthe path.

You can even test this in your web browser: https:/catfact.ninja/fact

Using the Requests library, we do this with get() .

Import
import requests

URL
url = 'https://catfact.ninja/fact'

Make a request
response = requests.get(url)

The requests.Response object tells us what the server said. We can access the response

content using content .

response_content = response.content

Display
display(response_content)

The response content is in the JSON format and Requests gives us the json() method that

decodes it and returns the corresponding data as Python objects. This is equivalent to
json.load() .

response_json = response.json()

Display
display(response_json)

(Note that, normally, we could study the APl documentation to check the response format
beforehand. However, many times manual inspection and trial-and-error is needed, as we did
here.)

https://catfact.ninja/
https://catfact.ninja/fact
https://requests.readthedocs.io/en/latest/api/#requests.get
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response.content
https://en.wikipedia.org/wiki/JSON
https://requests.readthedocs.io/en/latest/api/#requests.Response.json
https://docs.python.org/3/library/json.html#json.load

API which requires parameters

Let's then examine another API which accepts parameters to specify the information request.
In particular, we will request a list of Finnish universities from
http:/universities.hipolabs.com using the /search end point and a parameter country with

value Finland, like this: http://universities.hipolabs.com/search?country=Finland

URL
url = 'http://universities.hipolabs.com/search?country=Finland’

Make a request
response = requests.get(url)

Decode JSON
response_json = response.json()

Display
display(response_json[:2])

URLs containing parameters can always be constructed manually using the & character and
then listing the parameter (key, value) pairs as above.

However, Requests allows us to provide the parameters as a dictionary of strings, using the
params keyword argument to get() . This is easier to read and less error-prone.

URL
url = 'http://universities.hipolabs.com/search'

Make the parameter dictionary
parameters = {'country' : 'Finland'}

Get response
response = requests.get(url, params=parameters)

Decode JSON
response_json = response.json()

Display
display(response_json[:2])

Exercises 1

¢a Exercise WebAPIs-1: Request different activity suggestions from the Bored API

Go to the documentation page of the Bored API. The Bored APl is an open APl which can
be used to randomly generate activity suggestions.

https://requests.readthedocs.io/en/latest/user/quickstart/#passing-parameters-in-urls
http://universities.hipolabs.com/
https://requests.readthedocs.io/en/latest/api/#requests.get
https://www.boredapi.com/documentation

Let’s examine the first sample query on the page http:/www.boredapi.com/api/activity/
with a sample JSON response

{
"activity": "Learn Express.js",
"accessibility": 0.25,
"type": "education",
"participants": 1,
"price": 0.1,
"link": "https://expressjs.com/",
"key": "3943506"

}

Let’s replicate the query and see if we can get another random suggestion.

Import module
import requests

URL of the activity API end point
url = "http://www.boredapi.com/api/activity/"

Send the request using the get() function
response = requests.get(url)

Show the JSON content of the response
display(response.json())

Next, let’s try to narrow down the suggestions by adding some parameters

o type
« participants

All possible parameter values are presented at the bottom of the bored documentation page.
Relevant parts in the Requests documentation

Define some parameters

params = {
'"type' : 'education',
'participants' : 1,

}

Send the request using get() with parameters
response = requests.get(url, params)

https://requests.readthedocs.io/en/latest/user/quickstart/#parameters
https://requests.readthedocs.io/en/latest/user/quickstart/#parameters
https://requests.readthedocs.io/en/latest/user/quickstart/#parameters

Show the JSON content of the response
display("Response")
display(response.json())

Let’s narrow the request further with more parameters

« pricerange
« accessibility range

(All possible parameter values are again presented at the bottom of the document page.)

Define some parameters

params = {
"type' : 'social',
'participants' : 2,
'minprice' : 0O,
'maxprice' : 1000,
}

Send the request using get() with parameters
response = requests.get(url, params)

Show the JSON content of the response
display(response.json())
display("")

Exercises 2

za Exercise WebAPIs-2: Examine request and response headers

Request headers are similar to request parameters but usually define meta information
regarding, e.g., content encoding (gzip, utf-8) or user identification (user-agent/user
ID/etc., password/access token/etc.).

Let’s first make a request.

Import modules
import requests

URL of the activity API end point
url = "http://www.boredapi.com/api/activity/"

Make the request using the get() function
response = requests.get(url)

https://requests.readthedocs.io/en/latest/user/quickstart/#response-headers

We can access the headers of the original request

display("Request headers")
display(dict(response.request.headers))

We can also access the headers of the response

display("Response headers")
display(dict(response.headers))

In many cases, the default headers

P

"User]-[Agent[']: ["pyJtholn-[reques]ts[/]2.28.1["],
"Acceplt-Encodilnfg"]: ['gzip|, [dejflate, [or’],

"Acceplt[']: [*/*"]
| 'Connection' 'keep-alive‘}|

added automatically by Requests are sufficient. However, similarly to parameters, we can pass
custom headers to the get function as an argument.

This is useful when, for example, the API has restricted access and requires a user ID and/or
password as a part of the headers.

P

"User]-[Agent[']: ["pyJtholn-[reques]ts[/]2.28.1"],
"Acceplt-Encodilnfg"]: ['gzip|, [de[flate, [or’],

"Acceplt[']: [*/*"]
'Connection': 'keep-alive',|
'example—user-id ' : 'example-password' }|

For examples of APIs using this type of authentication, see

o Imgur API

For more on authentication, see also Requests documentation.
Exercises 3

¢ Exercise WebAPIs-3: Scrape links from a webpage (Advanced)

Let’s use Requests to get the HTML source code of www.example.com, examine it, and
use the Beautiful Soup library to extract links from it. Note: This requires the extra bsa

Python package to be installed, which was not in our initial requirements. Consider this a

https://requests.readthedocs.io/en/latest/user/quickstart/#custom-headers
https://api.imgur.com/oauth2
https://requests.readthedocs.io/en/latest/user/authentication/
https://requests.readthedocs.io/en/latest/user/authentication/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

demo.

Import module
import requests

Define webpage to scrape
url = "http://www.example.com/"

Make a request for the URL
response = requests.get(url)

Examine the response
display(response.content)

Looks like HTML :) Let's access it using the text attribute
html = response.text

print(html)

Import beautiful soup module
from bs4 import BeautifulSoup

Create soup
soup = BeautifulSoup(html, 'html.parser')

Extract page title from the HTML
print(f"Found title: {soup.title.text}")

Extract links (hrefs) from the HTML
for link in soup.find_all('a'):
print(f"Found link: {link.get('href')}")

Extract all text from the HTML
print(f"Found text: {soup.get_text()}")

After exercises: Saving retrieved data to disk

Usually, we want to save the retrieved data to disk for later use. For example, we might
collect data for one year and later analyze it for a longitudinal study.

To save the retrieved JSON objects to disk, it is practical to use the JSONLINES file format.
The JSONLINES format contains a single valid JSON object on each line. This is preferable to
saving each object as its own file since we don't, in general, want to end up with excessive
amounts of individual files (say, hundreds of thousands or millions).

For example, let’s retrieve three cat facts and save them to a JSONLINES file using the
jsonlines library.

Import

import requests
import jsonlines
import time

URL
url = 'https://catfact.ninja/fact'

Make three requests in loop and make a list of response JSON objects
for i in range(3):

Logging
print(f"Make request {i}")

Make a request
response = requests.get(url)

Decode to JSON
response_json = response.json()

Open a jsonlines writer in 'append' mode
with jsonlines.open('catfacts.jsonl', mode='a') as writer:

Write
writer.write(response_json)

Sleep for one second between requests
time.sleep(1)

We can then read the objects from the disk using the same library.

Open a jsonlines reader
with jsonlines.open('catfacts.jsonl', mode='r') as reader:

Read and display
for obj in reader:
display(obj)

Wrap-up

O Keypoints

« Requests is a common tool

https://jsonlines.readthedocs.io/en/latest/

« Web APIs may often require some trial and error, but actually getting data is usually
not that difficult
« Storing all the data and processing it well can be a much larger issue.

Software installation

This course is interactive and demonstrates many different tools. Thus, even beyond Python,
extra software (Python libraries) needs to be installed. This page contains the instructions.

Once the course starts, we don’t have time to stop for installing software.

Please make sure before the course that you have all the required software installed or some
other way access to it. For example, the workshop could be done with a remote Jupyter
server, as long as you can use the terminal from the Jupyter (you need to be able to access
the command line for some lessons).

O Do you need help?

Participants from a partner institution are invited to install help sessions. (Hint: ask your
institution to become a partner if it isn’t already!)

Otherwise, if you need installation help, show this page to someone around you and they
can probably help. These are relatively standard tools.

Don'’t be afraid to ask for help. Installing scientific software is harder than it should be and
it helps to have someone guide you through it.

Python

We expect you to have a working Python installation with some common libraries. We
currently recommend Miniforge, which includes the base and packages through a different,
freely usable channel. You can explore the options in the tabs below.

O Python, conda, anaconda, miniforge, etc?

Unfortunately there’s a lot of jargon. We'll go over this in the course but here is a crash
course:

« Python is a programming language very commonly used in science, it's the topic of this
course.

« Conda is a package manager: it allows distributing and installing packages, and is
designed for complex scientific code.

« Mamba is a re-implementation of Conda to be much faster with resolving
dependencies and installing things.

« An Environment is a self-contained collections of packages which can be installed
separately from others. They are used so each project can install what it needs
without affecting others.

« Anaconda is a commercial distribution of Python+Conda+many packages that all work

together. It used to be freely usable for research, but since ~2023-2024 it's more
limited. Thus, we don’t recommend it (even though it has a nice graphical user
interface).

« conda-forge is another channel of distributing packages that is maintained by the

community, and thus can be used by anyone. (Anaconda’s parent company also hosts

conda-forge packages)

- miniforge is a distribution of conda pre-configured for conda-forge. It operates via the

command line.
« miniconda is a distribution of conda pre-configured to use the Anaconda channels.

Miniforge Anaconda Other options

This is our recommended method - it can be used for any purpose and makes a strong
base for the future.

Follow the instructions on the miniforge web page. This installs the base, and from here
other packages can be installed.

Miniforge uses the command line - this gives you the most power but can feel unfamiliar.

See the command line crash course for an intro.

Starting Python

You need to Python in a way that activates conda/mamba.

Miniforge Anaconda Other options

Linux / MacOS Windows

Linux/MacOS: Each time you start a new command line terminal, you can activate
Miniforge by running. This is needed so that Miniforge is usable wherever you need,
but doesn'’t affect any other software on your computer (this is not needed if you
choose “Do you wish to update your shell profile to automatically initialize conda?”,
but then it will always be active):

$ source ~/miniforge3/bin/activate

https://github.com/conda-forge/miniforge
https://scicomp.aalto.fi/scicomp/shell/

Python for SciComp software environment
Once Python and conda/mamba are installed, you can use it to install an environment. An
environment is a self-contained set of extra libraries - different projects can use different

environments to not interfere with each other. This environment will have all of the software
needed for this particular course.

Miniforge Anaconda Other options

This environment file contains all packages needed for the course, and can be installed
with. The following command will install an environment named python-for-scicomp

(there may be lots of warning messages: this is OK if it still goes through):

Linux / MacOS Windows

$ mamba env create -n python-for-scicomp -f
https://raw.githubusercontent.com/AaltoSciComp/python-for-
scicomp/master/software/environment.yml

Each time you start a new command line, you need to activate miniforge and this
environment:

Linux / MacOS Windows

$ source ~/miniforge3/bin/activate
$ conda activate python-for-scicomp

JupyterLab

We do most of the lessons from JupyterLab (and JupyterLab provides most of the other tools
we need).

https://raw.githubusercontent.com/AaltoSciComp/python-for-scicomp/master/software/environment.yml

Miniforge Anaconda

JupyterLab was instaled in the previous step. To run it, first, start the Miniforge
command line interface. Remember, you may need to activate Miniforge and the
environment first.

Linux / MacOS Windows

$ source ~/miniforge3/bin/activate
$ conda activate python-for-scicomp
$ jupyter-lab

Verification of Python and JupyterLab

O Watch the video

See this verification in video form - if you can do this, you are ready to go for day one.
Your exact steps may be a bit different.

Remember that you need to activate the environment first - see the step above.

Miniforge Anaconda

You can start JupyterLab from the command line:

$ jupyter-lab
(... Jupyter starts in a web browser)

Verify that you can start a Jupyter notebook. We will learn how to do this in day 1, but you
can try running print("Hello, world!") if you want.

https://youtu.be/OEX1ss_HCHc

':JupyterLab x e Q - o X

C' @ localhost:8891/lab W -
: File Edit WView Run Kemmel Tabs Settings Help
Filter file e Q

-/ E] Notebook
. | Name - Last Modified
- B anacond... an hour ago

B bin 14 days ago a
* B Desktop 6 months ago

Python 3

B Docume... 6 months ago

B Downloa... 6 months ago

i git an hour ago

Console

B hands-o... 20 days ago

B mnt 5 months ago

m Music 6 months ago a

B nltk_data a month ago

B Pictures 6 months ago Python 3

Bm FPublic 6 months ago

B sys 14 days ago

B Templates 6 months ago Other

Starting a Jupyter Notebook from JupyterLab.
Text editor

For one portion of the course, you will need a text editor. If you don’t know what to use, you

can use the text editor that comes from JupyterLab and it will do everything you need - no
extra installation needed.

O Other editors

Because we need to be simple in our teaching, we only teach the most basic editors. We
encourage you to try out more advanced ones yourself.

For other editors, see the CodeRefinery instructions. You don't exactly need a terminal
editor - the graphical ones, such as VSCode or whatever you use now, will work as well.

Command line

You need access to the command line for some lessons. JupyterLab includes it, so no extra
installation is needed. If you want to test in advance:

« You can start it from JupyterLab (recommended):

https://coderefinery.github.io/installation/editors/

Other
M

v

Terminal Text File Markdown File

From the JupyterLab launcher, select “Terminal’.

O Other ways to access the command line

« From the Anaconda Navigator:

) ANACONDA NAVIGATOR

T

ﬁ Home
(Search Environments Q) [Installed v
&> ;
Environments E 9
j Acd
. _ Open with Python extd
B Learning python-for-scicomp
Open with IPython
an Community Open with Jupyter Notebook Con
anaconda O Sim

= <l H L

From the Anaconda Navigator, you can select “environments” on the left, then click on one,

then the arrow, then “Open terminal’.

« From your operating system’s terminal applications, if you activate Anaconda.

Verification of the command line

To verify command line usage, type the following commands (without the s), and you

should see the corresponding output that lists the Python version:

$ python3 -V
Python 3.8.3

Or python... if it's installed as that

$ python -V
Python 3.8.3

Any recent version of Python 3 should work for the course (for example 3.8 or higher).
Zoom

If this is an online workshop, it might use Zoom. You can see CodeRefinery instructions for it.

file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/jupyterlab-terminal.png
file:///home/runner/work/python-for-scicomp/python-for-scicomp/_build/pyppeteer/_images/jupyterlab-terminal.png
https://coderefinery.github.io/installation/zoom/

Need help?

If you have access, come to one of the installation help sessions. Or, ask your colleagues:
these are standard tools and you can definitely find someone can help you get set up!

See also

Research Software Hour on conda

Conda manual (technical)

Anaconda individual edition home

Anaconda getting started
Quick reference

« Pandas cheatsheet (pandas.pydata.org)

« Pandas cheatsheet (via Datacamp)

« Numpy cheatsheet (via Datacamp)

o JupyterLab cheatsheet

« Matplotlib cheatsheet (via Datacamp)

« Numpy, Pandas, Matplotlib, Scikit-learn all together

List of exercises

Full list

This is a list of all exercises and solutions in this lesson, mainly as a reference for helpers and
instructors. This list is automatically generated from all of the other pages in the lesson. Any
single teaching event will probably cover only a subset of these, depending on their interests.

Instructor’s guide

Learner personas

Ais a early career PhD researcher who has been using Python a bit, but is not sure what they
know or don'’t know. They want to be able to do their research more efficiently and make
sure that they are using the right tools. A may know that numpy exists, etc. and could
theoretically read some about it themselves, but aren’t sure if they are going in the right
direction.

A2 can use numpy and pandas, but have learned little bits here and there and hasn't had a
comprehensive introduction. They want to ensure they are using best practices. (Baseline of
high-level packages)

https://www.youtube.com/watch?v=ddCde5Nu2qo&list=PLpLblYHCzJAB6blBBa0O2BEYadVZV3JYf
https://docs.conda.io/en/latest/
https://www.anaconda.com/products/distribution
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
http://datacamp-community-prod.s3.amazonaws.com/f04456d7-8e61-482f-9cc9-da6f7f25fc9b
https://www.datacamp.com/community/data-science-cheatsheets
http://datacamp-community-prod.s3.amazonaws.com/da466534-51fe-4c6d-b0cb-154f4782eb54
https://www.datacamp.com/community/data-science-cheatsheets
https://comp.anu.edu.au/courses/comp2420/labs/lab-1/helpManuals/JupyterLab-Cheatsheet.pdf
https://datacamp-community-prod.s3.amazonaws.com/e1a8f39d-71ad-4d13-9a6b-618fe1b8c9e9
https://www.datacamp.com/cheat-sheet
https://web.itu.edu.tr/iguzel/files/Python_Cheat_Sheets.pdf

B is a mid-to-late undergraduate student who has used Python in some classes. They have
possibly learned the syntax and enough to use it in courses, but in a course-like manner
where they are expected to create everything themselves.

Prerequisites: - Knowing basic Python syntax - Watch the command line crash course, if you
aren’t familiar.

Not prerequisites: - Any external libraries, e.g. numpy - Knowing how to make scripts or use
Jupyter

About each section

In general, “Python for Scientific Computing could be a multi-year course. We can'’t even
pretend to really teach even a small fraction of it. We can, however, introduce people to
things that can very easily be missed in the typical academic career path.

« Python intro: We can't really replace a Python tutorial, but here we try to outline some of
the main points. We don’t go over this in the course.

« Jupyter: Jupyter is somewhat useful, but the main reason we go over it is that it provides
a convenient user interface for the other programming lessons (it’s easier to spend a bit of
time with Jupyter than expect people to be able to use some editor/IDE/shell/etc). So, we
do start from the beginning, so that people can do the other lessons, but also try to teach
some advanced tips and tricks.

« Numpy: The basic of much of the rest of scipy, so we need to cover it. We try to get the
main principles out, but if someone already knows it this can be a bit boring. We try to
make sure everyone comes out with an appreciation for vectorization and broadcasting.

« Pandas: A lot of similar goals to the Numpy section, especially the concepts behind
Dataframes that one needs to know in order to read other documentation.

« Visualization: Matplotlib is getting a bit old, but is still the backbone of other plotting
packages. We try to get forth the ideas of the matplotlib APl that can be seen in other
packages and the importance of scripted plots.

« Data formats: Input/output/storage is a common task, and can easily either be a
bottleneck or a huge mess. This lessons tries to show some best practices with data
formats and, as usual, get the idea to not “do it yourself”. Pandas is used as a common
framework, but we should point out there are plenty of other options.

« Scripts: The most important lesson here is to break out of Jupyter/run buttons of editors.
If you can’t make actual programs with an actual interface, you can't scale up.

o This is the first lesson to introduce the command line. We recommend being as simple
as possible: at least demonstrate the JupyterLab terminal and discuss the bigger
picture behind what it means and why.

o This is also the first lesson to use non-Jupyter code editor. We recommend again being
simple: use the JupyterLab code editor to start off, and carefully explain what is going
on.

« Scipy: We don'’t cover much here (this is super short), but the point is scipy exists and the
concept of wrapping existing C/fortran libraries and so on.

« Library ecosystem: This was an overview of the types of packages available in the “scipy
ecosystem”, which is a large and ill-defined thing. But there is another point: choosing
what to use. Do you trust a half-done thing published on someone’s personal webpage? If
it's on Github? How do you make your code more reusable? When coming from academic
courses, you get a “build it yourself” idea, which isn’t sustainable in research.

« Parallel programming:

- Dependencies: The main point here is environments, another thing you often don’t learn
in courses.

o Thereis a lot of material here. Consider what you will demo, what will be done as
exercises, and what is advanced/optional. However, it is the fourth-day lesson that is
most interactive, so it is OK if it take a while to go through everything.

o If someone else installs Anaconda for a user (e.g. admin-managed laptop), the conda
environment creations (with --name , possibly with --prefix too?) may not work. Be
prepared for this and mention it. You don’t need to solve the problem but
acknowledge that the lesson becomes a demo. The virtualenv part should hopefully
work for them.

« Binder: Binder exists and can help make code reproducible/reusable by others.

« Packaging: How to make your code reusable by others. By the time we get here, people
are tired and the topics get involved. We more explicitly say “you might want to watch
and take this as a demo”.

In depth analysis of some selected file formats

Here is a selection of file formats that are commonly used in data science. They are
somewhat ordered by their intended use.

Storing arbitrary Python objects

Pickle

O Key features

« Type: Binary format

« Packages needed: None (pickle -module is included with Python).
« Space efficiency:

« Arbitrary data:

« Tidy data:

 Array data:

« Long term archival/sharing:){! See warning below.

« Best use cases: Saving Python objects for debugging.

Loading pickles that you have not created is risky as they can contain arbitrary executable
code.

https://docs.python.org/3/library/pickle.html#module-pickle

Do not unpickle objects from sources that you do not trust!

pickle is Python’s own serialization library. It allows you to store Python objects into a

binary file, but it is not a format you will want to use for long term storage or data sharing. It
is best suited for debugging your code by saving the Python variables for later inspection:

import pickle

with open('data_array.pickle', 'wb') as f:
pickle.dump(data_array, f)

with open('data_array.pickle', 'rb') as f:
data_array_pickle = pickle.load(f)

Exercise 1

& Exercise

« Create an arbitrary python object (for example, a string or a list). Pickle it.

Read the pickled object back in and check if it matches the original one.

import pickle

my_object=["'test', 1, 2, 3]

with open('string.pickle', 'wb') as f:
pickle.dump(my_object, f)

with open('string.pickle', 'rb') as f:
my_pickled_object = pickle.load(f)

print(my_object, my_pickled_object)
print(my_object == my_pickled_object)

Storing tidy data

CSV (comma-separated values)

O Key features

« Type: Text format
» Packages needed: numpy, pandas
« Space efficiency: X

https://docs.python.org/3/library/pickle.html#module-pickle

Arbitrary data:)¢

Tidy data:

Array data:

Long term archival/sharing:

Best use cases: Sharing data. Small data. Data that needs to be human-readable.

CSVis by far the most popular file format, as it is human-readable and easily shareable.
However, it is not the best format to use when you're working with big data.

Pandas has a very nice interface for writing and reading CSV files with to_csv- and read_csv-
functions:

dataset.to_csv('dataset.csv', index=False)

dataset_csv = pd.read_csv('dataset.csv')

Numpy has routines for saving and loading arrays as CSV files as well:

np.savetxt('data array.csv', data_array)

data_array_csv = np.loadtxt('data_array.csv')

O Storing data in CSVs can reduce data precision

https://pandas.pydata.org/docs/user_guide/io.html#io-store-in-csv
https://pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table
https://numpy.org/doc/stable/reference/routines.io.html#text-files

When working with floating point numbers you should be careful to save the data
with enough decimal places so that you won't lose precision.

For example, double-precision floating point numbers have ~16 decimal places of
precision, but if you use normal Python to write these numbers, you can easily lose
some of that precision. Let’s consider the following example:

import numpy as np

test_number = np.sqrt(2)

Write the number in a file

test_file = open('sqrt2.csv', 'w')
test_file.write('%f' % test_number)
test_file.close()

Read the number from a file

test_file = open('sqrt2.csv', 'r')
test_number2 = np.float64(test_file.readline())
test_file.close()

Calculate the distance between these numbers
print(np.abs(test_number - test_number2))

CSV writing routines in Pandas and numpy try to avoid problems such as these by
writing the floating point numbers with enough precision, but even they are not
infallible. We can check whether our written data matches the generated data:

dataset.compare(dataset_csv)

np.all(data_array == data_array_csv)

In our case some rows of dataset_csv loaded from CSV do not match the original
dataset as the last decimal can sometimes be rounded due to complex technical

reasons.
Storage of these high-precision CSV files is usually very inefficient storage-wise.

Binary files, where floating point numbers are represented in their native binary
format, do not suffer from such problems.

Feather

O Requires additional packages

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://docs.python.org/3/tutorial/floatingpoint.html#representation-error
https://docs.python.org/3/tutorial/floatingpoint.html#representation-error

Using Feather requires pyarrow-package to be installed.

You can try installing pyarrow with

Ipip install pyarrow

or you can take this as a demo.

O Key features

« Type: Binary format

« Packages needed: pandas, pyarrow

. Space efficiency:

« Arbitrary data:)¢

. Tidy data:

« Array data:)¢

« Long term archival/sharing:)¢

« Best use cases: Temporary storage of tidy data.

Feather is a file format for storing data frames quickly. There are libraries for Python, R and
Julia.

We can work with Feather files with to_feather- and read feather-functions:

dataset.to_feather('dataset.feather')
dataset_feather = pd.read_feather('dataset.feather')

Feather is not a good format for storing array data, so we won't present an example of that
here.

Parquet

O Requires additional packages

https://arrow.apache.org/docs/python
https://arrow.apache.org/docs/python/feather.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-feather

Using Parquet requires pyarrow-package to be installed.

You can try installing PyArrow with

Ipip install pyarrow

or you can take this as a demo.

O Key features

« Type: Binary format

« Packages needed: pandas, pyarrow

. Space efficiency:

« Arbitrary data:

. Tidy data:

 Array data:

« Long term archival/sharing:

» Best use cases: Working with big datasets in tidy data format. Archival of said data.

Parquet is a standardized open-source columnar storage format that is commonly used for
storing big data. Parquet is usable from many different languages (C, Java, Python, MATLAB,
Julia, etc.).

We can work with Parquet files with to_parquet- and read_parquet-functions:

dataset.to_parquet('dataset.parquet')
dataset_parquet = pd.read_parquet('dataset.parquet')

Parquet can be used to store arbitrary data and arrays as well, but doing that is more
complicated so we won't do that here.

Exercise 2

w Exercise

o Create the example dataset :

https://arrow.apache.org/docs/python
https://arrow.apache.org/docs/python/parquet.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-parquet

import pandas as pd
import numpy as np

n_rows = 100000

dataset = pd.DataFrame(
data={
'string': np.random.choice(('apple', 'banana', 'carrot'), size=n_rows),
'timestamp': pd.date_range("20130101", periods=n_rows, freq="s"),
'integer': np.random.choice(range(0,10), size=n_rows),
'float': np.random.uniform(size=n_rows),

iy

« Save the dataset dataset as CSV. Load the dataset into a variable dataset_csv .
o Use dataset.compare(dataset_csv) to check if loaded dataset matches the original

one.

import pandas as pd
import numpy as np

n_rows = 100000
dataset = pd.DataFrame(
data={
'string': np.random.choice(('apple', 'banana', 'carrot'), size=n_rows),
'timestamp': pd.date_range("20130101", periods=n_rows, freq="s"),
'integer': np.random.choice(range(0,10), size=n_rows),

'float': np.random.uniform(size=n_rows),

iy

dataset.to_csv('dataset.csv', index=False)
dataset_csv = pd.read_csv('dataset.csv')

print(dataset.compare(dataset_csv))

Dataset might not be completely the same. Sometimes the CSV format cannot fully
represent a floating point value, which will result in rounding errors.

Storing array data

npy (numpy array format)

O Key features

« Type: Binary format
« Packages needed: numpy
« Space efficiency:

Arbitrary data:

Tidy data:)¢

Array data:

Long term archival/sharing:)¢

Best use cases: Saving numpy arrays temporarily.

If you want to temporarily store numpy arrays, you can use the numpy.save() - and

numpy . load() -functions:

np.save('data_array.npy', data_array)
data_array_npy = np.load('data_array.npy')

There also exists numpy.savez() -function for storing multiple datasets in a single file:

np.savez('data_arrays.npz', data_array@=data_array, data_arrayl=data_array)
data_arrays = np.load('data_arrays.npz')
data_arrays['data_array0']

For big arrays it's good idea to check other binary formats such as HDF5 or NetCDF4.

np.save - and np.savez -functions work with sparse matrices, but one can also use
dedicated scipy.sparse.save_npz- and scipy.sparse.load_npz-functions. Storing sparse
matrices using these functions can give huge storage savings.
HDF5 (Hierarchical Data Format version 5)

O Key features

« Type: Binary format

» Packages needed: numpy, pandas, PyTables, h5py

. Space efficiency:

« Arbitrary data:)¢

« Tidy data:)¢

« Array data:

« Long term archival/sharing:

» Best use cases: Working with big datasets in array data format.

HDF5 is a high performance storage format for storing large amounts of data in multiple
datasets in a single file. It is especially popular in fields where you need to store big
multidimensional arrays such as physical sciences.

Pandas allows you to store tables as HDF5 with PyTables, which uses HDF5 to write the
files. You can create a HDF5 file with to_hdf- and read_parquet-functions:

https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://numpy.org/doc/stable/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.save_npz.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.load_npz.html
https://www.pytables.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-hdf5

dataset.to_hdf('dataset.h5', key='dataset', mode='w')
dataset_hdf5 = pd.read_hdf('dataset.h5")

For writing data that is not a table, you can use the excellent h5py-package:

import h5py
Writing:

Open HDF5 file

h5_file = h5py.File('data_array.h5', 'w')

Write dataset

h5_file.create_dataset('data_array', data=data_array)
Close file and write data to disk. Important!
h5_file.close()

Reading:

Open HDF5 file again

h5_file = h5py.File('data_array.h5', 'r')
Read the full dataset

data_array_h5 = h5_file['data array'][()]

Close file
h5_file.close()

NetCDF4 (Network Common Data Form version 4)

O Requires additional packages

Using NetCDF4 requires netCDF4- or h5netcdf-package to be installed. h5netcdf is
often mentioned as being faster to the official netCDF4-package, so we'll be using it in
the example.

A great NetCDF4 interface is provided by a xarray-package.

You can try installing these packages with

Ipip install h5netcdf xarray

or you can take this as a demo.

O Key features

« Type: Binary format

« Packages needed: pandas, netCDF4/h5netcdf, xarray
« Space efficiency:

« Arbitrary data:)¢

https://docs.h5py.org/en/stable/
https://unidata.github.io/netcdf4-python
https://github.com/h5netcdf/h5netcdf
https://docs.xarray.dev/en/stable/getting-started-guide/quick-overview.html#read-write-netcdf-files

Tidy data:)¢

Array data:

Long term archival/sharing:

Best use cases: Working with big datasets in array data format. Especially useful if the
dataset contains spatial or temporal dimensions. Archiving or sharing those datasets.

NetCDF4 is a data format that uses HDF5 as its file format, but it has standardized structure
of datasets and metadata related to these datasets. This makes it possible to be read from
various different programs.

NetCDF4 is a common format for storing large data from big simulations in physical sciences.

Using interface provided by xarray :

Write tidy data as NetCDF4
dataset.to_xarray().to_netcdf('dataset.nc', engine='h5netcdf')

Read tidy data from NetCDF4

import xarray as xr

dataset_xarray = xr.open_dataset('dataset.nc', engine='h5netcdf')
dataset_netcdf4 = dataset_xarray.to_pandas()
dataset_xarray.close()

Working with array data is easy as well:

Write array data as NetCDF4
xr.DataArray(data_array).to_netcdf('data_array.nc', engine='h5netcdf')

Read array data from NetCDF4

data_array_xarray = xr.open_dataarray('data_array.nc', engine='h5netcdf")
data_array_netcdf4 = data_array_xarray.to_numpy()
data_array_xarray.close()

The advantage of NetCDF4 compared to HDF5 is that one can easily add other metadata e.g.
spatial dimensions (x , y, z)ortimestamps (t) that tell where the grid-points are

situated. As the format is standardized, many programs can use this metadata for
visualization and further analysis.

Exercise 3
« Create an example numpy array:

n = 1000

data_array = np.random.uniform(size=(n,n))

« Store the array as a npy.

« Read the dataframe back in and compare it to the original one. Does the data match?

v Solution

import numpy as np

n = 1000

data_array = np.random.uniform(size=(n,n))
np.save('data_array.npy', data_array)

data_array_npy = np.load('data_array.npy')
np.all(data_array == data_array_npy)

Other file formats

JSON (JavaScript Object Notation)

O Key features

Type: Text format

Packages needed: None (json -module is included with Python).
Space efficiency:)¢

Arbitrary data:

Tidy data:)¢

Array data:)¢

Long term archival/sharing:

Best use cases: Saving nested/relational data, storing web requests.

JSON is a popular human-readable data format. It is especially common when dealing with
web applications (REST-APIs etc.).

You
mul

Sim

rarely want to keep your data in this format, unless you're working with nested data with
tiple layers or lots of interconnections.

ilarly to other popular files, Pandas can write and read json files with to_json() - and

read_json() -functions:

dataset.to_json('dataset.json'")
dataset_json = pd.read_json('dataset.json")

Excel

https://docs.python.org/3/library/json.html#module-json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html#pandas.read_json

O Requires additional packages

Using Excel files with Pandas requires openpyxl|-package to be installed.

O Key features

» Type: Text format

« Packages needed: openpyxl

« Space efficiency:)

« Arbitrary data:)¢

« Tidy data:

« Array data:)¢

« Long term archival/sharing:

» Best use cases: Sharing data in many fields. Quick data analysis.

Excel is very popular in social sciences and economics. However, it is not a good format for
data science.

See Pandas’ documentation on working with Excel files.

Graph formats (adjency lists, gt, GraphML etc.)

O Key features

« Type: Many different formats

« Packages needed: Depends on a format.

« Space efficiency:

« Arbitrary data:)¢

« Tidy data:)¢

« Array data:)¢

« Long term archival/sharing:

« Best use cases: Saving graphs or data that can be represented as a graph.

There are plenty of data formats for storing graphs. We won't list them here as optimal data
format depends heavily on the graph structure.

One can use functions in libraries such as networkx, graph-tool, igraph to read and write
graphs.

Who is the course for?
The course is targeted towards these learner personas:
« Ais a early career PhD researcher who has been using Python a bit, but is not sure what

they know or don’t know. They want to be able to do their research more efficiently and
make sure that they are using the right tools. A may know that numpy exists, etc. and

https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://www.bbc.com/news/technology-54423988
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel
https://networkx.org/documentation/stable/reference/readwrite/index.html
https://graph-tool.skewed.de/static/doc/quickstart.html#graph-i-o
https://igraph.readthedocs.io/en/stable/tutorial.html#igraph-and-the-outside-world

could theoretically read some about it themselves, but aren’t sure if they are going in the
right direction.

« A2 can use numpy and pandas, but have learned little bits here and there and hasn’t had a
comprehensive introduction. They want to ensure they are using best practices. (Baseline
of high-level packages)

« Bis a mid-to-late undergraduate student who has used Python in some classes. They have
possibly learned the syntax and enough to use it in courses, but in a course-like manner
where they are expected to create everything themselves: they want to know how to
reuse tools that already exist.

Motivation

Why Python

Python has become popular, largely due to good reasons. It's very easy to get started, there'’s
lots of educational material, a huge amount of libraries for doing everything imaginable.
Particularly in the scientific computing space, there is the Numpy, Scipy, and matplotlib
libraries which form the basis of almost everything. Numpy and Scipy are excellent examples
of using Python as a glue language, meaning to glue together battle-tested and well
performing code and present them with an easy to use interface. Also machine learning and
deep learning frameworks have embraced python as the glue language of choice. And finally,
Python is open source, meaning that anybody can download and install it on their computer,
without having to bother with acquiring a license or such. This makes it easier to distribute
your code e.g. to collaborators in different universities.

Why not Python for Scientific Computing

While Python is extremely popular in scientific computing today, there are certainly things
better left to other tools.

« Implementing performance-critical kernels. Python is a very slow language, which often
doesn’t matter if you can offload the heavy lifting to fast compiled code, e.g. by using
Numpy array operations. But if what you're trying to do isn’t vectorizable then you're out
of luck. An alternative to Python, albeit much less mature and with a smaller ecosystem,
but which provides very fast generated code, is Julia.

« Creating libraries that can be called from other languages. In this case you'll often want to
create a library with a C interface, which can then be called from most languages.
Suitable languages for this sort of task, depending on what you are doing, could be Rust,
C, C++, or Fortran.

« You really like static typing, or functional programming approaches. Haskell might be what
you're looking for.

Python 2 vs Python 3

Python 3.0 came out in September 2008 and was just slightly different enough that most
code had to be changed, which meant that many projects ignored it for many years. It was
about 3-5 years until the differences were reduced enough (and better transition plans came
out, so that it was reasonable to use a single code for both versions) that it become more and
more adopted in the scientific community. Python 2 finally became unsupported in 2020, and
by now Python 3 is the defacto standard.

At this point, all new projects should use Python 3, and existing actively developed projects

should be upgraded to use it. Still, you might find some old unmaintained tools that are only
compatible with Python 2.

Credits

This course was originally designed by Janne Blomqvist.

In 2020 it was completely redesigned by a team of the following:
« Authors: Radovan Bast, Richard Darst, Anne Fouilloux, Thor Wikfeldt, ...
 Editor:

« Testers and advisors: Enrico Glerean

We follow The Carpentries Code of Conduct:
https:/docs.carpentries.org/topic_folders/policies/code-of-conduct.html

See also

« High Performance Data Analytics in Python is a logical follow-up to this lesson that goes
more in-depth to tools of high-performance and large-scale Python.

https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html
https://enccs.github.io/hpda-python/

