
Triton Cheatsheet v2.3 / 2025-05-30

Full documentation: scicomp.aalto.fi/triton/ Quick reference: scicomp.aalto.fi/triton/ref/

About Triton
● Over 10000 CPUs, 200 GPUs available, up to 256GB or 2TB memory/node.
● Available for all Aalto staff for any research.
● Good integration with department workstations: most filesystems are cross-mounted

and you can easily open and process files as if they were local.
● Rather than expect your workstation to do everything, develop to Triton and you can

scale up to whatever resources you need.
● Example Triton workflows: Test code on frontend node. Submit interactive test jobs

with “srun -p debug ./your-command” for fast testing. For production runs, do the
same but to bigger partitions using more CPUs, or use batch submissions. Examine
output on your own workstation via /m/DEPT/scratch/.

Getting help docs: Getting Triton help, see also scicomp.aalto.fi/help/
● All information on scicomp.aalto.fi/triton/. Includes quickstart tutorials.
● SciComp garage (help session): daily at 13:00: scicomp.aalto.fi/help/garage/
● Issue tracker: scicomp.aalto.fi/triton/issues (please no personal mail)
● Chat: scicomp.zulip.cs.aalto.fi - good for quick questions
● CS, NBE, and PHYS IT overlap with Triton support and can provide advice as well.
● Many courses in practical computing topics: scicomp.aalto.fi/training/
● Aalto RSE service gives advanced support: scicomp.aalto.fi/rse/

Connecting docs: Tutorials/Connecting, see scicomp.aalto.fi/triton/tut/connecting/
● Accounts are same as Aalto accounts, but need activation: request from link above.
● Login: ssh to triton.aalto.fi with Aalto user/pass or ssh keys. Use Aalto VPN.
● ondemand.triton.aalto.fi provides a web interface (including Jupyter).

Data Storage docs: Tutorials/Data storage
● /scratch is a Lustre filesystem: 5PB, networked and highly parallel. Also available on

(CS,NBE) workstations. All calculation data goes here.
● Using local disks can be more efficient for high I/O processes.
● Other department filesystems (CS,NBE) are on login node and group servers.

B=backed up, S=shared

 B S

$HOME + + Home dir, 10GB. Codes and configuration, not calculation files.

/m/DEPT/scratch/PROJ/ + Shared Lustre FS. Large and fast. Per-project. NO BACKUPS.

/m/DEPT/work/USER/ + Same as above, per-user. NO BACKUPS

/tmp/ Local disk storage. Not backed up.

version.aalto.fi Aalto git repository.

$XDG_RUNTIME_DIR Ramfs (in-memory filesystem): very temporary but fast space

Software availability docs: Tutorials/Applications
● Most software and libraries are in the “module” system. This allows you to select

what you need, including exact versions. It just changes environment variables like
$PATH, $LD_LIBRARY_PATH, etc. Use “env” to print these.

● Admins can install common software for you: just ask.
● The “module” function makes software available. Example: module load matlab or

module load matlab/r2023b (better, as you know which version you get).
● Since 2025 May, we have "software stacks": for example triton/2025.1-gcc may need

to be loaded before some other modules.
● Modules also contain dependencies: if you load E, it will automatically load A, B, C,

D if needed. So just request what you need.
● “which” shows exactly what a command name will run.

module spider PATTERN Search (full) for modules matching pattern.

module spider PATTERN/VER Show how to load this module, including possible software stack
modules you need to load first.

Module show NAME Show module details, exactly what it does.

module load NAME Load a module. Specify version with NAME/VERSION.

module unload NAME Unload a module.

module list List currently loaded modules.

module purge Remove all loaded modules from the current session.

module save ALIAS Save/restore currently loaded modules to a collection named ALAIS.
Loading a collection is much faster. module restore ALIAS

module savelist List saved collections.

Common software
● Python: we recommend the Anaconda modules for general-purpose Python. “module

load scicomp-python-env” for Python 3. For custom packages, see "conda" below.
● R: module load scicomp-r-env
● Matlab: module load matlab
● Mathematica: module load mathematica

● And so on… see user guide and/or discuss your needs with us.

Conda docs: Apps / Python environments with Conda
● Conda is the recommended way to install Python software.
● Module mamba provides mamba and conda commands.
● mamba is a much faster drop-in replacement for conda .
● We recommend not running conda init, and instead use

source activate instead of conda activate.
● environment.yml makes environments reproducible, example at right.
● Make own environment: conda env create --file environment.yml
● In batch scripts: module load mamba and source activate NAME
● More information can be found at scicomp.aalto.fi/triton/apps/python-conda/

Interactive jobs docs: Tutorials/Interactive jobs
● Easiest way to use triton: “Just add srun!” to your working command, and specify

how much power you need. (details described on next page)
● Example: srun --mem=50G --time=5:00 --cpus-per-task 6 ./your_command

○ (50GB Memory, 5 hours max runtime, 6 CPUs)
● sinteractive gets you a shell which is also usable for graphical applications.
● slurm history shows detailed CPU/memory usage of the process.

Batch jobs docs: Tutorials/Serial jobs
● Once you run interactively, you can make batch jobs

which run in the background - submit and return for
results later.

● Example script at right. Options can be inside the
script. Output goes to files in the same directory.

● Submit job with sbatch script-name.sh

● Monitor with slurm queue.
● slurm history shows resource usage, including details on CPU/time/memory for each

srun step.
● Slurm will run the batch script only once.
● Slurm will allocate as many CPUs as you request (-c N). It is up to you to make sure

your job can use them.

Parallel jobs docs: Tutorials/Parallel computing
● Easy: Array jobs. Use --array=M-N with sbatch

and you can easily scan parameters using
$SLURM_ARRAY_TASK_ID. The command is run
once with each parameter. Good for parameter
sweeps.

○ Example at right: Run with sbatch script.sh
● MPI, OpenMP, etc instructions in docs.
● OpenMP: Usually with -c. Use export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

● MPI: See docs. Usually with -n.
● Python/R/other languages: Usually with -c, but depends on the code. Must be

checked individually.
● Use seff JOBID to verify efficiency.

GPUs docs: Tutorials/GPU computing
● request with --gres=gpu . Can select type with --constraint=NAME . Recent names

include ampere, volta , pascal, and kepler.
● Check efficiency with sacct -j JOBID -o TRESUsageInAve -p after job completion.
● GPUs can be hard to use efficiently (especially data loading)! Usage statistics only

show the active time but do not the real occupancy levels. Ask for help early.

Slurm details docs: User guide/Reference, Running programs on Triton
● Slurm is the system which allocates CPU, GPUs, etc. to people doing computation.
● The core is a queuing system which fairly prioritizes users. The less you run, the

higher your priority.
● Work is submitted as jobs. CPUs, memory, and time must be declared for jobs. Jobs

killed if these limits are exceeded too much.
● In general, just declare what you need and Slurm will do the right thing.

The following commands give history about jobs:

slurm queue (slurm qq) Your currently queued jobs, or slurm watch queue for updating view

slurm history 1day|2hour|... Your recently completed jobs, with detailed time/memory info.

slurm job JOBID Info on a certain job.

seff JOBID Check effectiveness of requested resources.

squeue / sacct / scontrol Advanced info on waiting jobs / finished jobs / running jobs.

Slurm commands Further reference: scicomp.aalto.fi/triton/ref/#job-submission
The following commands submit jobs. All require some of the slurm options.

srun Run a single command on nodes, I/O connected to terminal.

srun (in batch script) Run a job step so that time/memory can be separately tracked

srun --pty [bash] Run a command (or shell) with full terminal support.

sinteractive Start a shell on a node, usable for graphical applications.

sbatch Run a batch script. Submits and returns immediately.

scancel JOBID Cancel a running job
Slurm options for srun, sbatch, or #SBATCH in batch scripts:

--time XXX Total job run time (HH:MM[:SS] or DD-HH)

-c N Number of cores (per task)

--mem nnG Total memory per node, only for single node jobs.

--mem-per-cpu nnG Total memory per CPU

-p PARTITION Partition to use (usually leave off) slurm p

-N N Number of nodes

-n n Number of tasks to start (number of individual srun processes to start)

-J JOBNAME Specify memorable job name

-o FILE, -e FILE Job stdout/stderr is saved to this file name. Default to same dir+jobid.

--array=N-M Array job, easy parallelization (only with sbatch). $SLURM_ARRAY_TASK_ID

--constraint XXX Request hardware type (hsw, bdw, skl, csl, milan, avx, avx2, avx512,)

--gpus=n (request n GPUs, for gpu partition), --constraint= (GPU generations: kepler, pascal, volta,
ampere). AMD GPUs: -p gpu-amd and no --gres . --exclusive (whole-node)

