
Triton Cheatsheet v2.1 / 2024-01-22
Full documentation: scicomp.aalto.fi/triton/ Quick reference: scicomp.aalto.fi/triton/ref/

About Triton
● Over 10000 CPUs, 200 GPUs available, up to 256GB or 2TB memory/node.
● Available for all Aalto staff for any research.
● Good integration with department workstations: most filesystems are cross-mounted

and you can easily open and process files as if they were local.
● Rather than expect your workstation to do everything, develop to Triton and you can

scale up to whatever resources you need.
● Example Triton workflows: Test code on frontend node. Submit interactive test jobs

with “srun -p debug ./your-command” for fast testing. For production runs, do the
same but to bigger partitions using more CPUs, or use batch submissions. Examine
output on your own workstation via /m/DEPT/scratch/.

Getting help docs: Getting Triton help, see also scicomp.aalto.fi/help/
● All information on scicomp.aalto.fi/triton/. Includes quickstart tutorials.
● SciComp garage (help session): daily at 13:00: scicomp.aalto.fi/help/garage/
● Issue tracker: scicomp.aalto.fi/triton/issues (please no personal mail)
● Chat: scicomp.zulip.cs.aalto.fi - good for quick questions
● CS, NBE, and PHYS IT overlap with Triton support and can provide advice as well.
● Many courses in practical computing topics: scicomp.aalto.fi/training/
● Aalto RSE service gives advanced support: scicomp.aalto.fi/rse/

Connecting docs: Tutorials/Connecting, see scicomp.aalto.fi/triton/tut/connecting/
● Accounts are same as Aalto accounts, but need activation: request from link above.
● Login: ssh to triton.aalto.fi with Aalto user/pass or ssh keys. Use Aalto VPN.
● ood.triton.aalto.fi and jupyter.triton.aalto.fi provide alternative interfaces.

Data Storage docs: Tutorials/Data storage
● /scratch is a Lustre filesystem: 5PB, networked and highly parallel. Also available on

(CS,NBE) workstations. All calculation data goes here.
● Using local disks can be more efficient for high I/O processes.
● Other department filesystems (CS,NBE) are on login node and group servers.

B=backed up, S=shared

B S

$HOME + + Home dir, 10GB. Codes and configuration, not calculation files.

/m/DEPT/scratch/PROJ/ + Shared Lustre FS. Large and fast. Per-project. NO BACKUPS.

/m/DEPT/work/USER/ + Same as above, per-user. NO BACKUPS

/tmp/ Local disk storage. Not backed up.

version.aalto.fi Aalto git repository.

$XDG_RUNTIME_DIR Ramfs (in-memory filesystem): very temporary but fast space

Software availability docs: Tutorials/Applications
● Most software and libraries are in the “module” system. This allows you to select

what you need, including exact versions. It just changes environment variables like
$PATH, $LD_LIBRARY_PATH, etc. Use “env” prints these.

● Admins can install common software for you: just ask.
● The “module” function makes software available. Example: module load matlab or

module load matlab/r2019a (better, as you know which version you get).
● Modules also contain dependencies: if you load E, it will automatically load A, B, C,

D if needed. So just request what you need.
● “which” shows exactly what a command name will run.

module spider PATTERN Search (full) for modules matching pattern.

module spider PATTERN/VER Show how to load this module (may need to load others first)

Module show NAME Show module details, exactly what it does.

module load NAME Load a module. Specify version with NAME/VERSION.

module unload NAME Unload a module.

module list List currently loaded modules.

module purge Remove all loaded modules from the current session.

module save ALIAS Save/restore currently loaded modules to a collection. Loading a
collection is much faster.module restore ALIAS

module savelist List saved collections.

Common software
● Python: we recommend the Anaconda modules for general-purpose Python. “module

load anaconda” for Python 3. For custom packages, see "conda" below.
● R: module load r

● Matlab: module load matlab

● Mathematica: module load mathematica

● And so on… see user guide and/or discuss your needs with us.

Conda docs: Apps / Python environments with Conda

● Conda is the recommended way to install Python software
● Module miniconda provides conda command
● mamba is a much faster drop-in replacement for conda .
● We recommend not running conda init, and instead use

source activate instead of conda activate.
● environment.yml makes environments reproducible, example at right.
● Make own environment: conda env create --file environment.yml

● In batch scripts: module load miniconda and source activate NAME

● More information can be found at scicomp.aalto.fi/triton/apps/python-conda/

Interactive jobs docs: Tutorials/Interactive jobs
● Easiest way to use triton: “Just add srun!” to your working command, and specify

how much power you need. (details described on next page)
● Example: srun --mem=50G --time=5:00 --cpus-per-task 6 ./your_command

○ (50GB Memory, 5 hours max runtime, 6 CPUs)

● sinteractive gets you a shell which is also usable for graphical applications.
● slurm history shows detailed CPU/memory usage of the process.

Batch jobs docs: Tutorials/Serial jobs
● Once you run interactively, you can make batch jobs

which run in the background - submit and return for
results later.

● Example script at right. Options can be inside the
script. Output goes to files in the same directory.

● Submit job with sbatch script-name.sh

● Monitor with slurm queue.
● slurm history shows resource usage, including details on CPU/time/memory for each

srun step.
● Slurm will run the batch script only once.
● Slurm will allocate as many CPUs as you request (-c N). It is up to you to make sure

your job can use them.

Parallel jobs docs: Tutorials/Parallel computing
● Easy: Array jobs. Use --array=M-N with sbatch

and you can easily scan parameters using
$SLURM_ARRAY_TASK_ID. The command is run
once with each parameter. Good for parameter
sweeps.

○ Example at right: Run with sbatch

script.sh

● MPI, OpenMP, etc instructions in docs.
● OpenMP: Usually with -c. export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

● MPI: See docs. Usually with -n.

● Python/R/other languages: Usually with -c, but depends on the code. Must be
checked individually.

● Use seff JOBID to verify efficiency.

GPUs docs: Tutorials/GPU computing
● request with --gres=gpu . Can select type with --constraint=NAME . Recent names

include ampere, volta , pascal, and kepler.
● Check efficiency with sacct -j JOBID -o comment -p after job completion.
● GPUs can be hard to use efficiently (especially data loading)! Ask for help early.

Slurm details docs: User guide/Reference, Running programs on Triton
● Slurm is the system which allocates CPU, GPUs, etc. to people doing computation.
● The core is a queuing system which fairly prioritizes users. The less you run, the

higher your priority.
● Work is submitted as jobs. CPUs, memory, and time must be declared for jobs. Jobs

killed if these limits are exceeded too much.
● In general, just declare what you need and Slurm will do the right thing.

The following commands give history about jobs:

slurm queue (slurm qq) Your currently queued jobs, or slurm watch queue for updating view

slurm history 1day|2hour|... Your recently completed jobs, with detailed time/memory info.

slurm job JOBID Info on a certain job.

seff JOBID Check effectiveness of requested resources.

squeue / sacct / scontrol Advanced info on waiting jobs / finished jobs / running jobs.

Slurm commands Further reference: scicomp.aalto.fi/triton/ref/#job-submission
The following commands submit jobs. All require some of the slurm options.

srun Run a single command on nodes, I/O connected to terminal.

srun (in batch script) Run a job step so that time/memory can be separately tracked

srun --pty [bash] Run a command (or shell) with full terminal support.

sinteractive Start a shell on a node, usable for graphical applications.

sbatch Run a batch script. Submits and returns immediately.

scancel JOBID Cancel a running job
Slurm options for srun, sbatch, or #SBATCH in batch scripts:

--time XXX Total job run time (HH:MM[:SS] or DD-HH)

-c N Number of cores (per task)

--mem nnG Total memory per node, only for single node jobs.

--mem-per-cpu nnG Total memory per CPU

-p PARTITION Partition to use (usually leave off) slurm p

-N N Number of nodes

-n n Number of tasks to start (number of individual srun processes to start)

-J JOBNAME Specify memorable job name

-o FILE, -e FILE Job stdout/stderr is saved to this file name. Default to same dir+jobid.

--array=N-M Array job, easy parallelization (only with sbatch). $SLURM_ARRAY_TASK_ID
--constraint XXX Request hardware type (hsw, bdw, skl, csl, milan, avx, avx2, avx512,)

--gres=gpu:n (request n GPUs, for gpu partition), --constraint= (GPU generations: kepler, pascal,
volta, ampere). AMD GPUs: -p gpu-amd and no --gres . --exclusive (whole-node)

