
Git the way you need it, the cheatsteet v1.4 / 2023-09-11 CC-BY 4.0 More info and courses from CodeRefinery, a Nordic project: https://coderefinery.org/lessons/

Git is a version control system (VCS) used to track changes to files.
By using git, you can go back to any previous version of your files.
Once something is committed once, it is very, very hard to ever lose it.
Without a VCS, work is not reproducible, not easily shared, not
recoverable, and it is not easy to find out when a bug got introduced.

The first side of this cheatsheet shows the most basic use, which should
be used in every project. Each level can be used without knowing
anything of the later levels. If you only use exactly the commands
here, you will never get to a state you can't recover. Some commands
do very different things depending on options, so check carefully first.

Terminology: working directory is the actual files you see right now.
Branch is a distinct line of work (main or master is usually the default
branch). A commit (verb) saves a version, and commit (noun) also
refers to that distinct version. Versions are identified by hashes (like
f3415b). The staging area is a place to collect changes before
committing.

Basic principles to prevent problems:
● Commit often
● Always commit before merging, pushing, pulling, etc.
● Check info commands often. You can see what is happening and
you will understand git better.

● Push and pull early and often. Less divergence is less chance of
conflict.

● All files in a repository should either be under version control or
ignored using .gitignore.

● Ask for help if needed - it's OK, you are doing complex stuff!

Basics
● git init - Create repository in current dir
● git clone URL [DIRECTORY] - Create a linked copy of other repo.
● git help CMD - Help on any subcommand
● git config - Set common configuration
○ git config --global user.name "Your Name"
○ git config --global user.email your@email.net
○ git config --global core.editor nano - or your text editor
○ git config --global alias.graph "log --all --oneline --decorate
--graph"

○ git config --global init.defaultBranch main - def branch name

Info commands
Before and after every Git command, run these info commands to
understand what is going on. ★=important
Info about what is currently changed:
● git status★ - What is uncommitted and about to be committed?
Shows working, staging, and already committed.

● git diff★ - What changes are currently unstaged?
● git diff --cached - What is already staged (about to be committed).
Info about entire history:
● git graph★ - Show current commit graph. Alias defined above.
● git log - More detailed log of changes. Also --stat to show what
changed and -p to show exact changes.

● git log FILE - Log of changes to single file.
● git show HASH - Show changes and msg in a commit.
● git show HASH:FILENAME - Show old contents of file.
● git diff HASH - Show changes between hash and now.
● git diff HASH..HASH - Show changes between commits.
● git annotate FILE - show last edit of every line in file.
● git grep PATTERN - search for pattern in every file.

Level 0: commit everything
The simplest usage is to commit everything. Your cycle is: add (first
time), [status], [diff], commit.
Start by telling files to track:
● git add FILE★ - Tell git a file is tracked. Run once on every file.
Then you can get info about current changes:
● git status★ - What is not yet committed or ignored?
● git diff★ - What exactly are those changes?
Then you can commit things:
● git commit FILE★ - Commit all changes in a single file.
● git commit -a - Commit all changes in tracked files.
● git commit -m "some message" - Give message on command line;
use with either of the above.

Then you can browse history:
● git graph - Show full concise history graph (see col 2 "Basics")
● git log - Verbose log.
● git show HASH - Show changes in any one version.
● git show HASH:FILE - Show old version of file.
Doing other management:
● git mv A B - Move A to B and stage the change (commit after).
● git rm A - Remove A from working copy and stage (commit after).
● git rm --cached FILE - Remove file from staging and git, leave
working copy (you should commit after).

● git revert HASH - Undo a change by committing opposite change.
You must commit everything first.

Level 0.5: selective commits
Similar to level 1, but you can commit only some lines at a time instead
of whole files. This allows you to have "one commit, one purpose"
which makes your code more accurate. From now on, -p always means
"ask me piece by piece".
● git commit -p★ - View all changes and decide which to commit
● git commit -p FILE - Like above, but single files.

.gitignore
Put a file .gitignore in the repository: each line is one file pattern
which should never be committed. Then, your git status output will be
useful. All files should be tracked or ignored, so keep .gitignore up to
date. The .gitignore file should be part of the repository to make sure
all collaborators have the same git status output.

Aalto Scientific Computing: https://scicomp.aalto.fi

https://coderefinery.org/lessons/
https://scicomp.aalto.fi


Level 1: staging
Git has a "staging" (pre-commit) area which you can use to stage files
before committing. This provides more organization and reduces
chances of mistakes. Your cycle becomes add (first time), (edit),
[status], [diff], add, [diff --cached], commit.
Get info:
● git status★ - Shows both changes and staging area. More
important now!

● git diff - With staging, show diff of unstaged changes.
● git diff --cached - View difference between last commit and staging
area.

Manage staging:
● git add [-p] FILE★ - Stage a file. With -p, decide on each change
individually.

● git commit★ - With no arguments, commit what is staged.
● git restore [-p] FILE - Revert working dir to last staged. (old:
checkout) (old: reset [-p])

● git restore --staged [-p] [FILE] - Discard changes to staging area
(go back to last commit). Don't touch working dir files.

Level 2: remotes, pushing, and pulling
Up to now, you have just tracked history locally. You can add remotes
and share with others. You push changes to a server, and pull changes
from server. Others do the same and you share code. If people modify
same line, there is a conflict and you should check next column. For
password-less pushing and pulling, use ssh keys (see “Advanced”).
Get info and setup:
● git clone URL - Create a new repo automatically linked to URL.
● git remote add NAME URL - Add a remote to existing repo.
● git remote [-v] - List remotes.
● git graph★ - Full commit graph, remotes labeled (see "Basics").
● Make SSH keys for automatic login: see "advanced".
Send and receive code:
● git fetch★ - Check what is new on remote side (git graph to see).
After fetch, you can merge as if it was a branch using git merge
REMOTE/NAME, see next section.

● git pull★ - Gets remote changes and merges them immediately.
Equivalent to fetch then merge, and for complex work it is
recommended to fetch, check changes, then merge.

● git push [REMOTE] [BRANCH]★ - Send changes to remote.
Use -u first time to set default upstream. Pull before you push. In
fact, pull before you start new work.

Level 3: branching
Branches are no different than remotes, and in fact branching should
come before remotes (but we do it second since you will probably push
and pull your own projects first).
Get info:
● git graph★ - Full commit graph, all branches labeled (see
"Basics")

● git branch [-a] [-v] - List all branches.
Manage branches:
● git branch BRANCH [HASH]★ - Create branch here or at some
hash. Don't switch to the new branch yet.

● git switch BRANCH★ - Switch to branch BRANCH. Adjusts
your current working files. Recommendation: commit first. (old:
checkout)

● git switch -c BRANCH - Create branch BRANCH and switch
immediately. (old: checkout -b)

● git merge BRANCH★ - Merge other branch changes into current
branch

● git branch -d BRANCH★ - Delete a branch. Use -D if to force if
it is not merged yet.

Conflict resolution
A conflict occurs when you try to merge changes that modify the same
lines differently than modifications on the current branch. A conflict
may seem scary, but by following these steps resolving it is easy.
Minimize conflicts by making small, frequent commits once something
works and pushing/pulling often. Commit everything before
merging/pulling.
Get info (run these repeatedly while resolving!):
● git status★ - Shows unmerged files.
● git diff★ - Shows changes on both sides.
Doing the merge:
● Edit the conflicting files and look for the "==", "<<", ">>". Remove
them and make the surrounding area look OK.

● git add★ - Mark file resolved and add to staging.
● Double-check status and diff commands again.
● git commit★ - Create a commit and finish up the resolution.
● git mergetool provides graphical help, first search web and set it up.
Giving up:
● git restore --theirs FILE - Revert to other version of file. (old:
checkout --theirs)

● git merge --abort - Give up merge, back to previous state.

If you get stuck and need to go back
If you do get to a place where you can't recover, you can always revert
back to a previous good state:
● git switch -f BRANCH - Return to other branch and discard all
changes, e.g. main/master. (old: checkout -f)

● git reset --hard HASH - Discard all changes, revert whole current
branch to past hash. Use HEAD for HASH for the last committed
version.

● git reset --mixed HASH - Revert whole branch to given hash, but
leave all working files the same (so you don't lose your work).

● git restore [-p] --source=HASH FILE - Change work dir file to old.

Stashing
If you need to hide some changes away without doing something as
permanent as a commit, you can stash them.
Get info:
● git stash list - List previous stashes.
● git stash show [-p] - Show contents of last stash.
Use the stash:
● git stash★ - Stash changes.
● git stash save NAME - Stash with a name to remind you of what it
was.

● git stash pop [ID]★ - Apply stash. If conflicts, merge them using
"conflict resolution" section, then remove later with git stash drop.

Advanced
● Git isn't good for large binary files. Use .gitignore and manage
separately, or check out git-LFS or git-annex.

● git commit --amend can change the last commit. Use with care and
only if you haven't pushed or merged yet. Also takes -p.

● Use aliases to save time: git config --global alias.X "yy --z".
● git tag -a NAME [HASH] - add an annotated tag at present point or
given hash. Names important revisions.

● git rebase allows you to powerfully move code and branches
around. Modifies history, don't use this unless you know what you
are doing. Most people can live without.

● Committed to the wrong branch? git cherry-pick commit to the
right branch, then “rewind” the other branch back with git reset
--hard (will lose all uncommitted changes).

● SSH keys: generate with ssh-keygen. Public key is in
~/.ssh/id_rsa.pub.For a step-by-step guide see
https://help.github.com/articles/connecting-to-github-with-ssh/.

https://help.github.com/articles/connecting-to-github-with-ssh/

